精英家教网 > 高中数学 > 题目详情
2.中国清朝数学家李善兰在1859年翻译《代数学》中首次将“function”译做:“函数”,沿用至今,为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数”.1930年美国人给出了我们课本中所学的集合论的函数定义,已知集合M={-1,1,2,4},N={1,2,4,16},给出下列四个对应法则:①y=log2|x|,②y=x+1,③y=2|x|,④y=x2,请由函数定义判断,其中能构成从M到N的函数的是(  )
A.①③B.①②C.③④D.②④

分析 在①中,当x=±1时,y=log21=0∉N;在②中,当x=-1时,y=-1+1=0∉N;在③中,任取x∈M,总有y=2|x|∈N;在④中,任取x∈M,总有y=x2∈N.

解答 解:在①中,当x=±1时,y=log21=0∉N,故①错误;
在②中,当x=-1时,y=-1+1=0∉N,故②错误;
在③中,任取x∈M,总有y=2|x|∈N,故③正确;
在④中,任取x∈M,总有y=x2∈N,故④正确.
故选:C.

点评 本题考查函数的判断,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1的一条渐近线与直线x+y+1=0垂直,则该双曲线的焦距为(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数$y=\frac{ax+2}{x+2}$在区间(-2,+∞)上是增函数,则a的取值范围为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直三棱柱ABC-A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分别为B1A、C1C、BC的中点.
(1)求证:直线DE∥平面ABC;
(2)求锐二面角B1-AE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l:y=kx+$\sqrt{3}$与y轴的交点是椭圆C:x2+$\frac{y^2}{m}=1({m>0})$的一个焦点.
(1)求椭圆C的方程;
(2)若直线l与椭圆C交于A、B两点,是否存在k使得以线段AB为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知圆C:(x-3)2+(y+1)2=4,过P(1,5)的直线l与圆C相切,则直线l的方程为x=1或4x+3y-19=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知cos($\frac{π}{4}-\frac{θ}{2}$)=$\frac{2}{3}$,则sinθ=(  )
A.$\frac{7}{9}$B.$\frac{1}{9}$C.-$\frac{1}{9}$D.-$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知g(x)=(x-e)2(e>0),f(x)=lnx+bx.
(1)讨论f(x)的单调性;
(2)当b=0时,记k(x)=$\frac{g(x)}{f(x)}$,已知k(x)有三个极值点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,在直三棱柱ABC-A1B1C1中,AB=BC=2$\sqrt{2},C{C_1}$=4,∠ABC=90°,E,F分别为AA1,C1B1的中点,沿棱柱的表面从点E到点F的最短路径的长度为(  )
A.$\sqrt{14+4\sqrt{2}}$B.$\sqrt{22}$C.$3\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

同步练习册答案