【题目】如图,在五面体
中,四边形
为矩形,
为等边三角形,且平面
平面
.
![]()
(1)证明:平面
平面
;
(2)若
,求直线
与平面
所成角的正弦值.
【答案】(1)见解析(2)![]()
【解析】
取
中点
,则
,从而
平面
,进而可得
平面
,由面面垂直的判定即可得证;
取
中点
,以
为坐标原点,
为
轴建系.利用空间向量法,求出直线
的方向向量
和平面
的法向量
,求出向量
和
夹角的余弦值即可.
证明:取
中点
,因为
为等边三角形,所以
,
又平面
平面
,且平面
平面
,
所以
平面
,则
,
又
,所以
平面
,
又
平面
,所以平面
平面
.
取
中点
,由
知平面![]()
平面
,
所以
平面
,
![]()
如图.以
为坐标原点,
为
轴建系.设
长度为
,
则点坐标为:
,
因为
,所以
平面
,
又平面
平面
,
平面![]()
由线面平行的性质知,
,
由共线向量定理知,存在唯一实数
使
,
因为
,所以点
.
则
,
由于
,所以
,
解得
.于是
,
设平面
的法向量为
,
因为
,
所以
,解得
,
从而平面
的法向量为![]()
又直线
的方向向量为
,
记直线
与平面
所成角为
,
所以![]()
所以直线
与平面
所成角的正弦值为![]()
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(a>b>0)的两个焦点分别为F1,F2,离心率为
,过F1的直线l与椭圆C交于M,N两点,且△MNF2的周长为8.
(1)求椭圆C的方程;
(2)若直线y=kx+b与椭圆C分别交于A,B两点,且OA⊥OB,试问点O到直线AB的距离是否为定值,证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近几年一种新奇水果深受广大消费者的喜爱,一位农户发挥聪明才智,把这种露天种植的新奇水果搬到了大棚里,收到了很好的经济效益.根据资料显示,产出的新奇水果的箱数x(单位:十箱)与成本y(单位:千元)的关系如下:
x | 1 | 3 | 4 | 6 | 7 |
y | 5 | 6.5 | 7 | 7.5 | 8 |
![]()
y与x可用回归方程
( 其中
,
为常数)进行模拟.
(Ⅰ)若该农户产出的该新奇水果的价格为150元/箱,试预测该新奇水果100箱的利润是多少元.|.
(Ⅱ)据统计,10月份的连续16天中该农户每天为甲地配送的该新奇水果的箱数的频率分布直方图如图所示.
(i)若从箱数在
内的天数中随机抽取2天,估计恰有1天的水果箱数在
内的概率;
(ⅱ)求这16天该农户每天为甲地配送的该新奇水果的箱数的平均值.(每组用该组区间的中点值作代表)
参考数据与公式:设
,则
|
|
|
|
0.54 | 6.8 | 1.53 | 0.45 |
线性回归直线
中,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学将100名高一新生分成水平相同的甲,乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲,乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下,计成绩不低于90分者为“成绩优秀”.
![]()
(1)从乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;
(2)由以上统计数据填写下面2x2列联表,并判断是否有
的把握认为“成绩优秀”与教学方式有关.
甲班(A方式) | 乙班(B方式) | 总计 | |
成绩优秀 | |||
成绩不优秀 | |||
总计 |
附:![]()
P( | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | /tr>
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果无穷数列{an}的所有项恰好构成全体正整数的一个排列,则称数列{an}具有性质P.
(Ⅰ)若an
(k∈N*),判断数列{an}是否具有性质P,并说明理由,
(Ⅱ)若数列{an}具有性质P,求证:{an}中一定存在三项ai,aj,ak(i<j<k)构成公差为奇数的等差数列;
(Ⅲ)若数列{an}具有性质P,则{an}中是否一定存在四项ai,aj,ak,al,(i<j<k<l)构成公差为奇数的等差数列?证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com