精英家教网 > 高中数学 > 题目详情
若圆锥的侧面积是底面积的3倍,则其母线与底面所成角的余弦值为
 
考点:旋转体(圆柱、圆锥、圆台)
专题:空间位置关系与距离
分析:根据题意,画出轴截面,结合图形求出母线与底面圆的半径之间的关系,即可得出结论.
解答: 解:根据题意,设圆锥的母线为l,底面圆半径为r,画出轴截面如图所示;
则侧面积是πrl,底面积是πr2
∴πrl=3πr2
即l=3r;
∴母线与底面所成角的余弦值为cosθ=
r
l
=
1
3

故答案为:
1
3
点评:本题考查了圆锥的侧面积与底面积公式的应用问题,解题时应画出图形,结合图形解答问题,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知:△ABC中,内角A、B、C的对边分别为a、b、c,若b=2,c=2
3
,∠B=30°.求:边a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在复平面内,复数
1+i
(1-i)2
对应的点位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg
1-x
1+x

(1)判断函数f(x)的奇偶性;
(2)若f(x)≤1,求实数x的取值范围;
(3)关于x的方程10f(x)=ax有实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+
1
x
-1.
(1)求函数f(x)的单调区间;
(2)设m∈R,对任意的a∈(-1,1),总存在x0∈[1,e],使得不等式ma-f(x0)<0成立,求实数m的取值范围;
(3)若{an}是首项为1的正项数列,且nan+12-(n+1)an2-an+1an=0,若不等式e(n-1)α≥an对任意的n≥2且n∈N*都成立,求α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,以正方形ABCD的对角线AC为折痕,使△ADC和△ABC折成相垂直的两个面,点O为AC的中点.
(1)求证:DO⊥OB;
(2)求BD与平面ABC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右顶点和上顶点分别为A,B,|AB|=
5
,离心率
3
2

(1)求椭圆的标准方程;
(2)过点A作斜率为k(k>0)的直线l与椭圆交于另外一点C,求△ABC面积的最大值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-2,2]上的奇函数,且f(2)=3.若对任意的m,n∈[-2,2],m+n≠0,都有
f(m)+f(n)
m+n
>0.
(1)判断函数f(x)的单调性,并说明理由;
(2)若f(2a-1)<f(a2-2a+2),求实数a的取值范围;
(3)若不等式f(x)≤(5-2a)t+1对任意x∈[-2,2]和a∈[-1,2]都恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(x-
2
2
n=a0xn+a1xn-1+a2xn-2+…an-1x+an,若a2=14,则an-3=
 

查看答案和解析>>

同步练习册答案