精英家教网 > 高中数学 > 题目详情

将一条线段任意分成三段,这三段能构成三角形三边的概率为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    1
A
分析:先设线段分成三段中两段的长度分别为x、y,分别表示出线段随机地折成3段的x,y的约束条件和3段构成三角形的条件,再画出约束条件表示的平面区域,代入几何概型概率计算公式,即可求出构成三角形的概率.
解答:解:不妨设这条线段的长为10,再设三段长分别为x,y,10-x-y,
则线段随机地折成3段的x,y的约束条件为,对应区域如下图三角形所示,其面积为 S=50,
能构成三角形的条件为
对应区域如图中阴影部分所示,其面积S阴影=
故把一条线段随机地分成三段,
这三段能够构成三角形的概率P==
故选A.
点评:本题主要考查了几何概型,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将一条线段任意分成三段,这三段能构成三角形三边的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给定平面上的点集P={P1,P2,…,P1994},P中任三点均不共线,将P中的所有的点任意分成83组,使得每组至少有3个点,且每点恰好属于一组,然后将在同一组的任两点用一条线段相连,不在同一组的两点不连线段,这样得到一个图案G,不同的分组方式得到不同的图案,将图案G中所含的以P中的点为顶点的三角形个数记为m(G).
(1)求m(G)的最小值m0
(2)设G*是使m(G*)=m0的一个图案,若G*中的线段(指以P的点为端点的线段)用4种颜色染色,每条线段恰好染一种颜色.证明存在一个染色方案,使G*染色后不含以P的点为顶点的三边颜色相同的三角形.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省赣州市南康中学高二(上)12月月考数学试卷(理科)(解析版) 题型:选择题

将一条线段任意分成三段,这三段能构成三角形三边的概率为( )
A.
B.
C.
D.1

查看答案和解析>>

科目:高中数学 来源:2013年全国高校自主招生数学模拟试卷(十七)(解析版) 题型:解答题

给定平面上的点集P={P1,P2,…,P1994},P中任三点均不共线,将P中的所有的点任意分成83组,使得每组至少有3个点,且每点恰好属于一组,然后将在同一组的任两点用一条线段相连,不在同一组的两点不连线段,这样得到一个图案G,不同的分组方式得到不同的图案,将图案G中所含的以P中的点为顶点的三角形个数记为m(G).
(1)求m(G)的最小值m
(2)设G*是使m(G*)=m的一个图案,若G*中的线段(指以P的点为端点的线段)用4种颜色染色,每条线段恰好染一种颜色.证明存在一个染色方案,使G*染色后不含以P的点为顶点的三边颜色相同的三角形.

查看答案和解析>>

同步练习册答案