精英家教网 > 高中数学 > 题目详情
设函数y=f(x)的定义域为D,若对于任意x1,x2∈D且x1+x2=2a,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.记函数f(x)的导函数为f′(x),f′(x)的导函数为f″(x),则有f″(a)=0.研究并利用函数f(x)=x3-3x2-sin(πx)的对称中心,可得f(
1
2012
)+f(
2
2012
)+…+f(
4022
2012
)+f(
4023
2012
)
=
-8046
-8046
分析:函数(x)=x3-3x2-sin(πx)图象的对称中心的坐标为(1,-2),即x1+x2=2时,总有f(x1)+f(x2)=-4,再利用倒序相加,即可得到结论.
解答:解:∵f''(x)=6x-6+π2sinπx
又∵f''(1)=0
而f(x)+f(2-x)=x3-3x2-sinπx+(2-x)3-3(2-x)2-sin(2π-πx)
=-4
函数(x)=x3-3x2-sin(πx)图象的对称中心的坐标为(1,-2),
即x1+x2=2时,总有f(x1)+f(x2)=-4
f(
1
2012
)+f(
2
2012
)+…+f(
4022
2012
)+f(
4023
2012
)
+f(
4023
2012
)+f(
4022
2012
)+…+f(
1
2012
)=-4×4023
f(
1
2012
)+f(
2
2012
)+…+f(
4022
2012
)+f(
4023
2012
)
=8046
故答案为:-8046
点评:本题考查函数的对称性,确定函数的对称中心,利用倒序相加x1+x2=2,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)的定义域为R,并且满足f(x+y)=f(x)+f(y),f(
13
)=1
,且当x>0时,f(x)>0.
(1)求f(0)的值;
(2)判断函数的奇偶性;
(3)如果f(x)+f(2+x)<2,求x取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)的定义域为全体R,当x<0时,f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y)成立,数列{an}满足a1=f(0),且f(an+1)=
1
f(
-an
2an+1
)
(n∈N*
(Ⅰ)求证:y=f(x)是R上的减函数;          
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若不等式
k
(1+a1)(1+a2)…(1+an)
-
1
2n+1
≤0
对一切n∈N*均成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)的定义域为R+,若对于给定的正数k,定义函数:fk(x)=
k,f(x)≤k
f(x),f(x)>k
,则当函数f(x)=
1
x
,k=1
时,函数fk(x)的图象与直线x=
1
4
,x=2,y=0围成的图形的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•闵行区一模)(文)设函数y=f(x)的反函数是y=f-1(x),且函数y=f(x)过点P(2,-1),则f-1(-1)=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•南汇区二模)设函数y=f(x)的定义域为R,对任意实数x,y都有f(x+y)=f(x)+f(y),当x>0时f(x)<0且f(3)=-4.
(1)求证:y=f(x)为奇函数;
(2)在区间[-9,9]上,求y=f(x)的最值.

查看答案和解析>>

同步练习册答案