精英家教网 > 高中数学 > 题目详情
(2008•南汇区二模)设函数y=f(x)的定义域为R,对任意实数x,y都有f(x+y)=f(x)+f(y),当x>0时f(x)<0且f(3)=-4.
(1)求证:y=f(x)为奇函数;
(2)在区间[-9,9]上,求y=f(x)的最值.
分析:(1)判断f(x)奇偶性,即找出f(-x)与f(x)之间的关系,∴令y=-x,有f(0)=f(x)+f(-x),故问题转化为求f(0)即可,可对x、y都赋值为0;
(2)先依据函数单调性的定义判断函数的单调性,充分利用条件当x>0时,有f(x)<0与f(x+y)=f(x)+f(y),即可判定单调性,最后利用函数的单调性求出在区间[-9,9]上,y=f(x)的最值即可.
解答:解:(1)证明:令x=y=0,得f(0)=0
令y=-x,得f(0)=f(x)+f(-x),即f(-x)=-f(x)
∴f(x)是奇函数…(6分)
(2)解:对任取实数x1、x2∈[-9,9]且x1<x2,这时,x2-x1>0,
f(x1)-f(x2)=f[(x1-x2)+x2]-f(x2)=f(x1-x2)+f(x2)-f(x1)=-f(x2-x1
因为x>0时f(x)<0,∴f(x1)-f(x2)>0
∴f(x)在[-9,9]上是减函数
故f(x)的最大值为f(-9),最小值为f(9)
而f(9)=f(3+3+3)=3f(3)=-12,f(-9)=-f(9)=12
∴f(x)在区间[-9,9]上的最大值为12,最小值为-12  …(12分)
点评:本题考点是抽象函数及其性质,在研究其奇偶性时本题采取了连续赋值的技巧,这是判断抽象函数性质时常用的一种探究的方式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•南汇区二模)一列火车自A城驶往B城,沿途有n个车站(包括起点站A和终点站B),车上有一节邮政车厢,每停靠一站便要卸下前面各站发往该站的邮袋各一个,同时又要装上该站发往后面各站的邮袋各一个,试求:
(1)列车从第k站出发时,邮政车厢内共有邮袋数是多少个?
(2)第几站的邮袋数最多?最多是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•南汇区二模)过定点(1,2)作两直线与圆x2+y2+kx+2y+k2-15=0相切,则k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•南汇区二模)已知等比数列{an}的前n项和Sn=2n-1,则a12+a22+…an2=
1
3
(4n-1)
1
3
(4n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•南汇区二模)(理) 已知(1+x)n=a0+a1x+a2x2+…+anxn,若a0+a1+a2+…+an=16,则自然数n=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•南汇区二模)(文) 已知集合M={a,0},N={x|2x2-5x<0,x∈Z},若M∩N≠∅,则a=
1或2
1或2

查看答案和解析>>

同步练习册答案