精英家教网 > 高中数学 > 题目详情

设a,b,c都是正数,求证:数学公式

证明:∵2(
=()+()+(
≥2+2+2
=2c+2b+2a,

当且仅当a=b=c时,等号成立.
分析:从不等式的左边入手,左边对应的代数式的二倍,分别写成两两相加的形式,在三组相加的式子中分别用均值不等式,整理成最简形式,得到右边的2倍,两边同时除以2,得到结果.
点评:本题考查均值不等式的应用,考查不等式的证明方法,是一个基础题,但是这种题目必须练到过,不然不好考虑,因为题目不符合均值不等式的表现形式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a,b,c都是正数,且3a=4b=6c,那么(  )
A、
1
c
=
1
a
+
1
b
B、
2
c
=
2
a
+
1
b
C、
1
c
=
2
a
+
2
b
D、
2
c
=
1
a
+
2
b

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c都是正数,M=
bc
a
+
ca
b
+
ab
c
,N=a+b+c,则M,N的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c都是正数,那么三个数a+
1
b
,b+
1
c
,c+
1
a
(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设a、b、c都是正数,则a+
1
b
,b+
1
c
,c+
1
a
三个数

①都大于2
②至少有一个大于2
③至少有一个不大于2
④至少有一个不小于2.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c都是正数,且a+2b+c=1,则
1
a
+
1
b
+
1
c
的最小值为(  )

查看答案和解析>>

同步练习册答案