精英家教网 > 高中数学 > 题目详情

已知F1、F2是椭圆的两焦点,P是椭圆在第一象限弧上一点,且满足·=1.过点P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点.

(1)求P点坐标;

(2)求证直线AB的斜率为定值;

(3)求△PAB面积的最大值.

答案:
解析:

  (1)由题可得F1(0,),F2(0,-),设P(x0,y0)(x0>0,y0>0)

  则

  在曲线上,

  则

  则点P的坐标为(1,)

  (2)由题意知,两直线PA、PB的斜率必存在,设PB的斜率为k(k>0)

  则BP的直线方程为:y-=k(x-1)

  

  

  AB的斜率为定值

  (3)设AB的直线方程:

  

  

  

  当且仅当m=±2∈(-2,2)取等号

  ∴三角形PAB面积的最大值为


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1,F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点,若在椭圆上存在一点P,使∠F1PF2=120°,则椭圆离心率的范围是
[
3
2
,1
[
3
2
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆
y2
a2
+
x2
b2
=1(a>b>0)
的两个焦点,若椭圆上存在点P使得∠F1PF2=120°,求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆的两个焦点.△F1AB为等边三角形,A,B是椭圆上两点且AB过F2,则椭圆离心率是
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知 F1、F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点,椭圆上存在一点P,使得SF1PF2=
3
b2
,则该椭圆的离心率的取值范围是
[
3
2
,1)
[
3
2
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是椭圆
x2
2
+y2=1
的两个焦点,点P是椭圆上一个动点,那么|
PF1
+
PF2
|
的最小值是(  )

查看答案和解析>>

同步练习册答案