精英家教网 > 高中数学 > 题目详情
已知
a
=(sinA,cosA),
b
=(cosC,sinC),若
3
a
b
=sin2B,
a
b
的夹角为θ,且A、B、C为三角形ABC的内角.
求(1)∠B      
(2)cos
θ
2
(1)
a
b
=sinAcosC+cosAsinC=sin(A+C)=sin(π-B)=sinB.
3
a
b
=sin2B,
3
sinB
=2sinBcosB,
∵sinB≠0,
∴cosB=
3
2

∵B∈(0,π),
B=
π
6

(2)∵|
a
|=
sin2A+cos2A
=1,|
b
|
=
cos2C+sin2C
=1.
∴cosθ=
a
b
|
a
||
b
|
=
sinB
1×1
=
1
2

又∵θ∈[0,π],
θ=
π
3

cos
θ
2
=cos
π
6
=
3
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知向量
m
=(sinx,1),
n
=(
3
Acosx,
A
2
cos2x)(A>0)
,函数f(x)=
m
n
-1
的最大值为3.
(Ⅰ)求A以及最小正周期T;
(Ⅱ)将函数y=f(x)的图象向左平移
π
12
个单位,再将所得图象上各点的横坐标缩短为原来的
1
2
倍,纵坐标不变,得到函数y=g(x)的图象.求g(x)在[-
π
12
π
6
]
上的最小值,以及此时对应的x的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量
a
b
的夹角为60°,且|
a
|=2,|
b
|=1,若
c
=
a
-4
b
d
=
a
+2
b
,求
(1)
a
b

(2)|
c
+
d
|.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

a
=(3,2)
b
=(1,-5)
,则
a
b
的夹角为______.(结果用反三角函数表示)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知a∈R,函数m(x)=x2,n(x)=aln(x+2).
(Ⅰ)令f(x)=
m(x),x≤0
n(x),x>0
,若函数f(x)的图象上存在两点A、B满足OA⊥OB(O为坐标原点),且线段AB的中点在y轴上,求a的取值集合;
(Ⅱ)若函数g(x)=m(x)+n(x)存在两个极值点x1、x2,求g(x1)+g(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设点A,B是椭圆C:x2+4y2=8上的两点,且|AB|=2,点F为椭圆C的右焦点,O为坐标原点.
(Ⅰ)若
OF
AB
=0
,且点A在第一象限,求点A的坐标;
(Ⅱ)求△AOB面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面向量
a
b
不共线,若存在非零实数x,y,使得
c
=
a
+2x
b
d
=-y
a
+2(2-x2
b

(1)当
c
=
d
时,求x,y的值;
(2)若
a
=(cos
π
6
,sin(-
π
6
)
),
b
=(sin
π
6
,cos
π
6
),且
c
d
,试求函数y=f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.
(Ⅰ)若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,求sin(α+β)的值;
(Ⅱ)若|AB|=
3
2
,求
OA
OB
的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,60°的二面角的棱上有A、B两点,线段AC、BD分别在这个二面角的两个半平面内,且都垂直于AB,已知AB=4,AC=6,BD=8,则CD的长为(  )
A..2
17
B.2
23
C..2
35
D.2
41

查看答案和解析>>

同步练习册答案