分析 由已知得2(|$\overrightarrow{{a}_{1}}$|+|$\overrightarrow{{a}_{2}}$|+|$\overrightarrow{{a}_{3}}$|+…+|$\overrightarrow{{a}_{n}}$|)≥n|$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$|,再由n>2,结合向量的模的性质可得$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…$\overrightarrow{{a}_{n}}$=$\overrightarrow{0}$,进而得到所求和的模.
解答 解:由已知得|$\overrightarrow{{a}_{1}}$|≥|$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$|,
可得2|$\overrightarrow{{a}_{1}}$|≥|$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$|+|$\overrightarrow{{a}_{1}}$|≥|$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$|,
同理可得2|$\overrightarrow{{a}_{2}}$|≥|$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$|,
…
2|$\overrightarrow{{a}_{n}}$|≥|$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n-1}}$+$\overrightarrow{{a}_{n}}$|,
∴2(|$\overrightarrow{{a}_{1}}$|+|$\overrightarrow{{a}_{2}}$|+|$\overrightarrow{{a}_{3}}$|+…+|$\overrightarrow{{a}_{n}}$|)≥n|$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$|,
$\frac{2}{n}$(|$\overrightarrow{{a}_{1}}$|+|$\overrightarrow{{a}_{2}}$|+|$\overrightarrow{{a}_{3}}$|+…+|$\overrightarrow{{a}_{n}}$|)≥|$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$|,
由于n>2可得$\frac{2}{n}$<1,
且|$\overrightarrow{{a}_{1}}$|+|$\overrightarrow{{a}_{2}}$|+|$\overrightarrow{{a}_{3}}$|+…+|$\overrightarrow{{a}_{n}}$|≥|$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$|,
可得$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…$\overrightarrow{{a}_{n}}$=$\overrightarrow{0}$,
则|$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…$\overrightarrow{{a}_{n}}$|=0.
故答案为:0.
点评 本题考查向量和的模的求法,是中档题,解题时要认真审题,注意条件n>2的合理运用.
科目:高中数学 来源:2017届湖北省协作校高三联考一数学(理)试卷(解析版) 题型:解答题
已知函数
.
(1)若曲线
在点
处的切线与
轴垂直,且
有极大值,求实数
的取值范围;
(2)若
,试判断
在
上的单调性,并加以证明.(提示:
).
查看答案和解析>>
科目:高中数学 来源:2016-2017学年重庆市高一上学期第一次月考数学试卷(解析版) 题型:选择题
已知集合A中元素(x,y)在映射f下对应B中元素(x+y,x-y),则B中元素(4,-2)在A中对应的元素为( )
A.(1,3) B.(1,6) C.(2,4) D.(2,6)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x2+(y-$\frac{1}{2}$)2=4 | B. | x2+(y-$\frac{1}{2}$)2=12 | C. | x2+(y-1)2=4 | D. | x2+(y-1)2=12 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com