精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(x-1)2,g(x)=4(x-1),数列{an}满足a1=2,且(an+1-an)g(an)+f(an)=0.
(1)试探究数列{an-1}是否是等比数列;
(2)试证明
(3)设bn=3f(an)﹣g(an+1),试探究数列{bn}是否存在最大项和最小项.若存在求出最大项和最小项,若不存在,说明理由.
解:(1)由(an+1﹣an)g(an)+f(an)=0
得4(an+1﹣an)(an﹣1)+(an﹣1)2=0
化得:(an﹣1)(4an+1﹣4an+an﹣1)=0,?an﹣1=0或4an+1﹣4an+an﹣1=0,
由已知a1=2,∴an﹣1=0(舍去).
∴4an+1﹣4an+an﹣1=0得4an+1=3an+1
从而有:an+1﹣1=
∴数列{an﹣1}是首项为a1﹣1=1,公比为的等比数列
∴an﹣1=
∴数列{an}通项公式为an=+1.
(2)由(1)知=+n=4[1﹣]+n
∵对?n∈N*,有

+n≥1+n,

(3)由bn=3f(an)﹣g(an+1)得bn=3(an﹣1)2﹣4(an+1﹣1)
=
,则0<u≤1,
bn=3(u2﹣u)=
∵函数上为增函数,在上为减函数
当n=1时u=1,
当n=2时
当n=3时,=
当n=4时
,且
∴当n=3时,bn有最小值,即数列{bn} 有最小项,最小项为
当n=1即u=1时,bn有最大值,即有最大项,最大项为b1=3(1﹣1)=0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案