精英家教网 > 高中数学 > 题目详情
9.已知奇函数f(x)的定义域为R,且当x>0时,f(x)=x2-3x+2,若函数y=f(x)-a有3个零点,则实数a的值是±$\frac{1}{4}$.

分析 根据奇函数的性质作出f(x)的函数图象,根据函数图象判断f(x)=a的解的个数.

解答 解:∵f(x)是奇函数,∴f(x)的图象关于原点对称,且f(0)=0,
做出f(x)的函数图象如图所示:

由图象可知当a=±$\frac{1}{4}$时,方程f(x)=a有3解,
故答案为:±$\frac{1}{4}$.

点评 本题考查了奇函数的性质,函数零点与函数图象的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若$\overrightarrow{a}$=(-8,1),$\overrightarrow{b}$=(3,4),则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的射影是-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与y=$\sqrt{3}$x-1平行,且它的一个焦点在抛物线y2=8$\sqrt{2}$x的准线上,则双曲线的方程为$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{6}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知l为平面α内的一条直线,α,β表示两个不同的平面,则“α⊥β”是“l⊥β”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C所对的边分别是a,b,c,且a2=3bc.
(Ⅰ)若sinA=sinC,求cosA;
(Ⅱ)若a=3,求△ABC的周长的最小值..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.命题“?x∈R,x3>x2的否定是(  )
A.?x0∈R,x03>x02B.?x0∉R,x03>x02C.?x0∈R,x03≤x02D.?x0∉R,x03≤x02
E.?x0∈R,x03≤x02         

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数y=f(x)是定义在(0,+∞)上的减函数,并且满足f(2)=1,f($\frac{x}{y}$)=f(x)-f(y).
(1)求f(1)和f($\frac{1}{4}$)的值;
(2)如果f(3x)+f(3x-2)<3,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=$\frac{4}{x}$在区间[2,4]上的最小值是 (  )
A.1B.3C.2D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆E:$\frac{x^2}{a^2}+\frac{x^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,左,右焦点为F1,F2,上顶点为P,圆C:(x-2a)2+(y-b)2=4恰好与直线PF1相切.
(1)求圆C的方程;
(2)过椭圆的上顶点是否存在一条直线L与圆C交于A,B两点,且$\overrightarrow{CA}•\overrightarrow{CB}=\frac{92}{5}$,若存在,求出直线L的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案