(本小题满分14分)在平面直角坐标系xOy中,已知点A(-1,1),P是动点,且三角形POA的三边所在直线的斜率满足kOP+kOA=kPA.
( I)求点P的轨迹C的方程;
(Ⅱ)若Q是轨迹C上异于点P的一个点,且
,直线OP与QA交于点M,问:是否存在点P使得△PQA和△PAM的面积满足S△PQA=2S△PAM?若存在,求出点P的坐标;若不存在,说明理由.
![]()
解:(Ⅰ)设点
为所求轨迹上的任意一点,则由
得,
,
整理得轨迹
的方程为
(
且
).·············· 4分
(Ⅱ)方法一、
设
,
由
可知直线
,则
,
故
,即
,········ 6分
由
三点共线可知,
与
共线,
∴
,
由(Ⅰ)知
,故
,········· 8分
同理,由
与
共线,
∴
,
即
,
由(Ⅰ)知
,故
,············ 10分
将
,
代入上式得
,
整理得
,
由
得
, ························· 12分
由
,得到
,因为
,所以
,
由
,得
,∴
的坐标为
. ············· 14分
方法二、设![]()
由
可知直线
,则
,
故
,即
,···················· 6分
∴直线OP方程为:
①;····················· 8分
直线QA的斜率为:
,
∴直线QA方程为:
,即
②;··· 10分
联立①②,得
,∴点M的横坐标为定值
.············ 12分
由
,得到
,因为
,所以
,
由
,得
,∴
的坐标为
.············· 14分
【解析】略
科目:高中数学 来源: 题型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为
(a>b>0),曲线C2的方程为y=
,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知
=2,点(
)在函数
的图像上,其中
=
.
(1)证明:数列
}是等比数列;
(2)设
,求
及数列{
}的通项公式;
(3)记
,求数列{
}的前n项和
,并证明
.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第
天(
)的销售价格(单位:元)为
,第
天的销售量为
,已知该商品成本为每件25元.
(Ⅰ)写出销售额
关于第
天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知
的图像在点
处的切线与直线
平行.
⑴ 求
,
满足的关系式;
⑵ 若
上恒成立,求
的取值范围;
⑶ 证明:
(
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com