精英家教网 > 高中数学 > 题目详情
16.已知i虚数单位,则($\frac{1+2i}{1-i}$)2-($\frac{2-i}{1+i}$)2=(  )
A.-3+4iB.0C.-4+3iD.-4-3i

分析 由于$\frac{1+2i}{1-i}$=$\frac{i(2-i)}{-i(1+i)}$=-$\frac{2-i}{1+i}$.代入化简即可得出.

解答 解:∵$\frac{1+2i}{1-i}$=$\frac{i(2-i)}{-i(1+i)}$=-$\frac{2-i}{1+i}$.
∴($\frac{1+2i}{1-i}$)2-($\frac{2-i}{1+i}$)2=($\frac{2-i}{1+i}$)2-($\frac{2-i}{1+i}$)2=0,
故选:B.

点评 本题考查了复数的运算性质,考查了推理能力与技能数列,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)为y=3x,x∈[0,2]的反函数,g(x)=[f(x)]2+f(x2),若g(x)≤k恒成立,求实数k的取值范围.(注意反函数f(x)的定义域与g(x)的定义域)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在三棱锥P-ABC中,PA⊥底面ABC,AC⊥BC,AC=2,二面角P-BC-A的大小为60°,三棱锥P-ABC的体积为$\frac{{4\sqrt{6}}}{3}$,则直线PB与平面PAC所成的角的正弦值为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知α为第四象限的角,则tan$\frac{α}{2}$(  )
A.一定是正数B.一定是负数
C.正数、负数都有可能D.有可能是零

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某人有一容积为V,高为a且装满了油的直三棱柱形容器,不小心将该容器掉在地上,有两处破损并发生渗漏,其位置分别在两条侧棱上且距下底面高度分别为b、c的地方,且容器盖也被摔开了(盖为上底面),为减少油的损失,此人采用破口朝上,倾斜容器的方式拿回家,估计容器内的油最理想的剩余量是多少.(容器壁的厚度忽略不计)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆C与y轴相切,圆心在直线2x-y=0上,且直线x-y=0被圆C截得的弦长为2$\sqrt{2}$.
(1)求圆C的标准方程;
(2)已知两定点A(0,1),B(0,-1),P为圆C上的动点,求|PA|2+|PB|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若点(16,tanθ)在函数y=log2x的图象上,则$\frac{1+cos2θ+8si{n}^{2}θ}{sin2θ}$=(  )
A.$\frac{20\sqrt{3}}{3}$B.$\frac{65}{4}$C.4D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知抛物线y2=2px(p>0)上有A、B两点,且OA⊥OB,直线AB与x轴相交于点P,则点P的坐标为(2p,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知圆M:x2+(y-1)2=1,圆N:x2+(y+1)2=1,直线l1、l2分别过圆心M、N,且l1与圆M相交于A、B,l2与圆N相交于C、D,P是椭圆$\frac{x^2}{3}+\frac{y^2}{4}$=1上的任意一动点,则$\overrightarrow{PA}•\overrightarrow{PB}+\overrightarrow{PC}•\overrightarrow{PD}$的最小值为(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.3D.6

查看答案和解析>>

同步练习册答案