精英家教网 > 高中数学 > 题目详情

【题目】如图,设椭圆 的离心率为 分别为椭圆的左、右顶点, 为右焦点,直线的交点到轴的距离为,过点轴的垂线 上异于点的一点,以为直径作圆.

(1)求的方程;

(2)若直线的另一个交点为,证明:直线与圆相切.

【答案】(1) ;(2)证明见解析.

【解析】试题分析:

(1)结合题意可求得 ,则的方程为.

(2)由题意可得,直线与圆相切时,直线的斜率为,结合(1)中求得的椭圆方程即可证得题中的结论.

试题解析:

(1)解:由题可知, ,∴

设椭圆的方程为

,得,∴

的方程为.

(2)证明:由(1)可得: ,设圆的圆心为,则

的半径为

直线的方程为.

设过与圆相切的直线方程为

,整理得:

,得

又∵

∴直线与圆相切.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设全集为R,函数 的定义域为M,则RM为(
A.(2,+∞)
B.(﹣∞,2)
C.(﹣∞,2]
D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,比较与1的大小;

(2)当时,如果函数仅有一个零点,求实数的取值范围;

(3)求证:对于一切正整数,都有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 的定义域是一切实数,则m的取值范围是(
A.0<m≤4
B.0≤m≤1
C.m≥4
D.0≤m≤4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:

(1)求频率分布直方图中a的值;
(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;
(3)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=2+log3x,x∈[1,9],求函数y=[f(x)]2+f(x2)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)为定义在R上的奇函数,且在(0,+∞)内是增函数,又f(2)=0,则不等式x5f(x)>0的解集为(
A.(﹣2,0)∪(2,+∞)
B.(﹣∞,﹣2)∪(0,2)
C.(﹣2,0)∪(0,2)
D.(﹣∞,﹣2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司的两个部门招聘工作人员,应聘者从 T1、T2两组试题中选择一组参加测试,成绩合格者可签约.甲、乙、丙、丁四人参加应聘考试,其中甲、乙两人选择使用试题 T1 , 且表示只要成绩合格就签约;丙、丁两人选择使用试题 T2 , 并约定:两人成绩都合格就一同签约,否则两人都不签约.已知甲、乙考试合格的概率都是 ,丙、丁考试合格的概率都是 ,且考试是否合格互不影响.
(1)求丙、丁未签约的概率;
(2)记签约人数为 X,求 X的分布列和数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调区间;

(2)当时,证明: .

查看答案和解析>>

同步练习册答案