精英家教网 > 高中数学 > 题目详情
若(
1
3
x<(
1
5
x,则x的取值范围为
 
考点:指、对数不等式的解法
专题:函数的性质及应用
分析:由(
1
3
x<(
1
5
x,得((
5
3
)x
<1,从而求解x的取值范围.
解答: 解:∵(
1
3
x<(
1
5
x
(
5
3
)x
<1,
∴x<0.
故答案为:(-∞,0)
点评:本题主要考查指数函数的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=
log0.4(x-4)
的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinωxcosωx-cos2ωx﹙ω>0﹚,其图象的最高点M与相邻最低点N的距离MN=
1
4
π2+64

(1)求ω的值;
(2)若△ABC三边a、b、c成等差数列,且边b所对角为∠B,求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,B,C为三个内角,求证:sinA+sinB+sinC=4cos
A
2
cos
B
2
cos
C
2

查看答案和解析>>

科目:高中数学 来源: 题型:

求数列
22+1
22-1
32-1
32+1
,…,
(n+1)2+1
(n+1)2-1
,…的前n项之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知l1过点P1(4,2),l2过点P2(-1,3),若l1∥l2,且l1与l2间距离最大,则l1的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=x+
4
x
分别在下列区间上的值域:
(1)x∈(0,3];
(2)x∈(1,5];
(3)x∈[3,5];
(4)x∈[-2,-1];
(5)x∈[1,a](a>1).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
为两个单位向量,若向量
c
满足(
a
-
c
)(
b
-
c
)=0,则向量|
c
|的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{4n-2n}(n∈N*)的前n项和为Sn,bn=
2n
Sn
,则数列{bn}的前n项和Tn=
 

查看答案和解析>>

同步练习册答案