精英家教网 > 高中数学 > 题目详情
5.下列计算正确的是(  )
A.(a32=a9B.log26-log23=1C.a${\;}^{-\frac{1}{2}}$•a${\;}^{\frac{1}{2}}$=0D.log3(-4)2=2log3(-4)

分析 利用有理指数幂以及对数运算法则判断选项即可.

解答 解:(a32=a6,A不正确;log26-log23=log22=1,B正确;a${\;}^{-\frac{1}{2}}$•a${\;}^{\frac{1}{2}}$=a0=1,C不正确;log3(-4)2=2log3(-4),不正确;
故选:B.

点评 本题考查有理指数幂的运算法则以及对数运算法则的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.A、B两点的坐标分别为(5,4)、(1,8),P是x2+y2=5上一动点,求S=PA2+PB2最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图是底面积为$\sqrt{3}$,体积为$\sqrt{3}$的正三棱锥的主视图(等腰三角形)和左视图(等边三角形),此正三棱锥的侧视图的面积为(  )
A.$\frac{3\sqrt{3}}{2}$B.3C.$\sqrt{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知在Rt△ABC中,∠C=90°,∠A≠∠B,设sinB=n,当∠B是最小的内角时,n的取值范围是(  )
A.0<n<$\frac{\sqrt{2}}{2}$B.0<n<$\frac{1}{2}$C.0<n<$\frac{\sqrt{3}}{3}$D.0<n<$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求证:
(Ⅰ)已知a,b,c∈R,求证:a2+b2+c2≥ab+bc+ca
(Ⅱ)若a>0,b>0,且a+b=1,求证:$\frac{1}{a}$+$\frac{1}{b}$≥4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设集合U=R,A={x|2≤x<4},B={x|x≥3}.求:A∩B,(∁UA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.过抛物线y2=2px(p>0)的焦点F作倾斜角为θ的直线交抛物线于A、B两点,设△AOB的面积S(O为原点).
(1)用θ、p表示S;
(2)求S的最小值;当最小值为4时,求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=x2+2x-1在区间[-2,2]上的最大值为(  )
A.-2B.-1C.5D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.直线l1与l2方程分别为y=x,2x-y-3=0.则两直线交点坐标为(  )
A.(1,1)B.(2,2)C.(1,3)D.(3,3)

查看答案和解析>>

同步练习册答案