精英家教网 > 高中数学 > 题目详情
精英家教网如图所示,在四面体P-ABC中,已知PA=BC=6,PC=AB=10,AC=8,PB=2
34
.F是线段PB上一点,CF=
15
17
34
,点E在线段AB上,且EF⊥PB.
(1)证明:PB⊥平面CEF;
(2)求二面角B-CE-F的大小.
分析:(1)由题意得EF⊥PB,可根据S△PBC面积的两种表示形式得出CF⊥PB,从而可证得结论.
(2)在平面PAB内,过F作FF1垂直AB交AB于F1,则FF1⊥平面ABC,根据tan∠FEB=cot∠PBA可求得二面角B-CE-F的大小.
解答:(1)证明:∵PA2+AC2=36+64=100=PC2
∴△PAC是以∠PAC为直角的直角三角形,同理可证:△PAB是以∠PAB为直角的直角三角形,△PCB是以∠PCB为直角的直角三角形.
故PA⊥平面ABC.
又∵S△PBC=
1
2
|AC||BC|=
1
2
×10×6=30.
1
2
|PB||CF|=
1
2
×2
34
×
15
17
34
=30=S△PBC
故CF⊥PB,又已知EF⊥PB,
∴PB⊥平面CEF.
(2)由(1)知PB⊥CE,PA⊥平面ABC,
∴AB是PB在平面ABC上的射影,故AB⊥CE,
在平面PAB内,过F作FF1垂直AB交AB于F1,则FF1⊥平面ABC,
精英家教网
EF1是EF在平面ABC上的射影,
∴EF⊥EC.
故∠FEB是二面角B-CE-F的平面角,tan∠FEB=cot∠PBA=
AB
AP
=
10
6
=
5
3

二面角B-CE-F的大小为arctan
5
3
点评:本题考查了直线与平面垂直的判定及二面角的知识,有一定难度,关键是掌握二面角的求法及直线垂直平面的判定方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,在四面体P-ABC中,PA⊥BC,PB⊥AC,BC=2,PB=PC,P-BC-A是60°的二面角.
(1)求证:PC⊥AB;
(2)求四面体P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四面体P—ABC中,已知PA=BC=6,PC=AB=10,AC=8,PB=.F是线段PB上一点,CF=,点E在线段AB上,且EF⊥PB.

(1)证明PB⊥平面CEF;

(2)求二面角BCEF的大小.

查看答案和解析>>

科目:高中数学 来源:2010年广东省高三上学期期中考试理科数学卷 题型:解答题

(本小题满分14分)

如图所示,在四面体P—ABC中,已知PA=BC=6,PC=AB=8,AC=,PB=10,F是线段PB上一点,,点E在线段AB上,且EF⊥PB.

   (Ⅰ)证明:PB⊥平面CEF;

   (Ⅱ)求二面角B—CE—F的正弦值

 

查看答案和解析>>

科目:高中数学 来源:广东省高考真题 题型:解答题

如图所示,在四面体P-ABC中,已知PA=BC=6,PC=AB=10,AC=8,PB=,F是线段PB上一点,CF=,点E在线段AB上,且EF⊥PB,
(Ⅰ)证明:PB⊥平面CEF;
(Ⅱ)求二面角B-CE-F的大小。

查看答案和解析>>

同步练习册答案