精英家教网 > 高中数学 > 题目详情
“x≠3”是“|x-3|>0”的( )
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既非充分又非必要条件
【答案】分析:由题意看命题“x≠3”与命题“|x-3|>0”是否能互推,然后根据必要条件、充分条件和充要条件的定义进行判断.
解答:解:对于“x≠3”⇒“|x-3|>0”;
反之“|x-3|>0”⇒“x≠3”一定成立,
因此“x≠3”是“|x-3|>0”的充分必要条件,
故选C..
点评:本小题主要考查了命题的基本关系,题中的设问通过对不等关系的分析,考查了命题的概念和对于命题概念的理解程度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的偶函数,且f(1-x)=f(-x-3),当0≤x≤2时,f(x)=
x
2
,那使f(x)=
1
2
成立的x的集合为(  )
A、{x|x=2n,n∈Z}
B、{x|x=2n-1,n∈Z}
C、{x|x=4n-1,n∈Z}
D、{x|x=4n+1,n∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x=3是函数f(x)=aln(1+x)+x2-10x的一个极值点.求:
(I)实数a的值;  
(Ⅱ)函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=log2(x+3)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•河北区一模)集合A={x|-3<x<5},B={x|x<1或x>4},则?RA∩?RB是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区二模)已知函数y=f(x),x∈D,如果对于定义域D内的任意实数x,对于给定的非零常数m,总存在非零常数T,恒有f(x+T)>m•f(x)成立,则称函数f(x)是D上的m级类增周期函数,周期为T.若恒有f(x+T)=m•f(x)成立,则称函数f(x)是D上的m级类周期函数,周期为T.
(1)试判断函数f(x)=log
12
(x-1)
是否为(3,+∞)上的周期为1的2级类增周期函数?并说明理由;
(2)已知函数f(x)=-x2+ax是[3,+∞)上的周期为1的2级类增周期函数,求实数a的取值范围;
(3)下面两个问题可以任选一个问题作答,如果你选做了两个,我们将按照问题(Ⅰ)给你记分.
(Ⅰ)已知T=1,y=f(x)是[0,+∞)上m级类周期函数,且y=f(x)是[0,+∞)上的单调递增函数,当x∈[0,1)时,f(x)=2x,求实数m的取值范围.
(Ⅱ)已知当x∈[0,4]时,函数f(x)=x2-4x,若f(x)是[0,+∞)上周期为4的m级类周期函数,且y=f(x)的值域为一个闭区间,求实数m的取值范围.

查看答案和解析>>

同步练习册答案