精英家教网 > 高中数学 > 题目详情

已知圆方程为

(1)求圆心轨迹的参数方程和普通方程;

(2)点是(1)中曲线上的动点,求的取值范围.

 

【答案】

(1);(2).

【解析】(1)先将圆的方程化成标准方程,设圆心坐标P(x,y)即可得其参数方程  (为参数),然后利用,即可化成普通方程即可。

(2)由(1)知 =,则易得2x-y的取值范围为[-5,5].

解:将圆的方程整理得:(x-2cos)2+(y+3sin)2=9    1分

设圆心坐标为P(x,y),则参数方程:  (为参数)  3分

    5分

     (2)2x-y=4cos+3sin =

                   …10分    

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选修4-4 :坐标系与参数方程

已知圆方程为.

(1)求圆心轨迹的参数方程

(2)点是(1)中曲线上的动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省高三上学期第一次模拟考试理科数学试卷(解析版) 题型:解答题

已知圆方程为.

(1)求圆心轨迹的参数方程C;

(2)点是(1)中曲线C上的动点,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年黑龙江省高三第三次模拟考试理科数学 题型:解答题

已知圆方程为

(1)求圆心轨迹的参数方程

(2)点是(1)中曲线上的动点,求的取值范围。

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆方程为

 (1)求圆心轨迹的参数方程

(2)点是(1)中曲线上的动点,求的取值范围。

查看答案和解析>>

同步练习册答案