精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)讨论函数的单调性:

2)若函数在区间上的最小值为0,求的值.

【答案】1)见解析(2

【解析】

1)求导,根据导数讨论参数,再由参数讨论单调性;

2)由(1)的讨论可知当时,上单调递减,在上单调递增.然后比较1的大小,若,则其最小值为,若,其最小值为,分别求出

后,看是否满足条件,可求出的值.

1)因为,所以

①当时,,故上单调递增;

②当时,,令,得

所以当时,,函数单调递减,

时,,函数单调递增,

上单调递减,在上单调递增.

综上所述,当时,上单调递增;

时,上单调递减,在上单调递增.

2)当时,函数,不符合题意

时,由(1)可知上单调递减,在上单调递增.

①当,即时,函数在区间上单调递增,所以的最小值为,由题得,解得,符合题意.

②当,即时,函数在区间上单调递减,在区间上单调递增,所以的最小值为

由题得,解得,不符合题意.

综上所述,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥OABCD的底面是边长为1的菱形,OA2,∠ABC60°,OA⊥平面ABCDMN分别是OABC的中点.

1)求证:直线MN∥平面OCD

2)求点M到平面OCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《高中数学课程标准》(2017版)规定了数学直观想象学科的六大核心素养,为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是(注:雷达图,又可称为戴布拉图、蜘蛛网图,可用于对研究对象的多维分析)(

A.甲的直观想象素养高于乙

B.甲的数学建模素养优于数据分析素养

C.乙的数学建模素养与数学运算素养一样

D.乙的六大素养整体水平低于甲

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】BMI指数(身体质量指数,英文为BodyMassIndex,简称BMI)是衡量人体胖瘦程度的一个标准,BMI=体重(kg/身高(m)的平方.根据中国肥胖问题工作组标准,当BMI28时为肥胖.某地区随机调查了120035岁以上成人的身体健康状况,其中有200名高血压患者,被调查者的频率分布直方图如下:

1)求被调查者中肥胖人群的BMI平均值

2)填写下面列联表,并判断是否有99.9%的把握认为35岁以上成人患高血压与肥胖有关.

0.050

0.010

0.001

k

3.841

6.635

10.828

肥胖

不肥胖

合计

高血压

非高血压

合计

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若上存在极大值,求的取值范围;

2)若轴是曲线的一条切线,证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划投资开发一种新能源产品,预计能获得10万元1000万元的收益.现准备制定一个对开发科研小组的奖励方案:奖金(单位:万元)随收益(单位:万元)的增加而增加,且奖金总数不超过9万元,同时奖金总数不超过收益的.

(Ⅰ)若建立奖励方案函数模型,试确定这个函数的定义域、值域和的范围;

(Ⅱ)现有两个奖励函数模型:①;②.试分析这两个函数模型是否符合公司的要求?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx,g(x)=,

(1)求f(x)的最小值;

(2)对任意都有恒成立,求实数a的取值范围;

(3)证明:对一切,都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为1,线段上有两个动点,且,现有如下四个结论:

平面

三棱锥的体积为定值;异面直线所成的角为定值,

其中正确结论的序号是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若方程有实数根,则称为函数的一个不动点.已知函数.

1)若,求证:有唯一不动点;

2)若有两个不动点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案