精英家教网 > 高中数学 > 题目详情
在数列{an}和等比数列{bn}中,a1=0,a3=2,bn=2an+1(n∈N*).
(1)求数列{bn}及{an}的通项公式;
(2)若cn=an·bn,求数列{cn}的前n项和Sn.
(1)an=n-1(2)Sn=4+(n-2)·2n+1
(1)方法一,依题意b1=2,b3=23=8,
设数列{bn}的公比为q,由bn=2an+1>0,可知q>0.
由b3=b1·q2=2·q2=8,得q2=4,又q>0,则q=2,
故bn=b1qn-1=2·2n-1=2n
又由2an+1=2n,得an=n-1.
(2)依题意cn=(n-1)·2n.
Sn=0·21+1·22+2·23+…+(n-2)·2n-1+(n-1)·2n,①
则2Sn=0·22+1·23+2·24+…+(n-2)·2n+(n-1)·2n+1,②
①-②得
-Sn=22+23+…+2n-(n-1)·2n+1-(n-1)·2n+1
即-Sn=-4+(2-n)·2n+1,故Sn=4+(n-2)·2n+1.
方法二,(1)依题意{bn}为等比数列,则=q(常数),
由bn=2an+1>0,可知q>0.
=2an+1-an=q,
得an+1-an=log2q(常数),故{an}为等差数列.
设{an}的公差为d,由a1=0,a3=a1+2d=0+2d=2,得d=1,
故an=n-1.
(2)同方法一.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列为等差数列,且
(1)求数列的通项公式;
(2)求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列是等差数列,且.
(1)求数列的通项公式;  (2)令,求数列前n项和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在等差数列中,,其前n项和为,等比数列的各项均为正数,,公比为q,且.
(1)求
(2)设数列满足,求的前n项和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列{an}为等差数列,公差为d,若<-1,且它的前n项和Sn有最大值,则使得Sn<0的n的最小值为(  )
A.11B.19C.20D.21

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列{an}为等差数列,Sn为其前n项和,且a2=3a4-6,则S9等于(  )
A.25B.27C.50D.54

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知数列{an}满足anan+1an+2·an+3=24,且a1=1,a2=2,a3=3,则a1+a2+a3+…+a2 013=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

公差不为零的等差数列{an}的第2,3,6项构成等比数列,则这三项的公比为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知数列{an},an+1=an+2,a1=1,数列的前n项和为,则n=________.

查看答案和解析>>

同步练习册答案