精英家教网 > 高中数学 > 题目详情
(2012•天津)现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(1)求这4个人中恰有2人去参加甲游戏的概率;
(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;
(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X-Y|,求随机变量ξ的分布列与数学期望Eξ.
分析:依题意,这4个人中,每个人去参加甲游戏的概率为
1
3
,去参加乙游戏的人数的概率为
2
3

设“这4个人中恰有i人去参加甲游戏”为事件Ai(i=0,1,2,3,4),故P(Ai)=
C
I
4
(
1
3
)
I
(
2
3
)
4-I

(1)这4个人中恰有2人去参加甲游戏的概率为P(A2);
(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏”为事件B,则B=A3∪A4,利用互斥事件的概率公式可求;
(3)ξ的所有可能取值为0,2,4,由于A1与A3互斥,A0与A4互斥,求出相应的概率,可得ξ的分布列与数学期望.
解答:解:依题意,这4个人中,每个人去参加甲游戏的概率为
1
3
,去参加乙游戏的人数的概率为
2
3

设“这4个人中恰有i人去参加甲游戏”为事件Ai(i=0,1,2,3,4),∴P(Ai)=
C
I
4
(
1
3
)
I
(
2
3
)
4-I

(1)这4个人中恰有2人去参加甲游戏的概率为P(A2)=
C
2
4
(
1
3
)
2
(
2
3
)
2
=
8
27

(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏”为事件B,则B=A3∪A4
∴P(B)=P(A3)+P(A4)=
C
3
4
(
1
3
)
3
×
2
3
+
C
4
4
 (
1
3
)
4
=
1
9

(3)ξ的所有可能取值为0,2,4,由于A1与A3互斥,A0与A4互斥,故P(ξ=0)=P(A2)=
8
27

P(ξ=2)=P(A1)+P(A3)=
40
81
,P(ξ=4)=P(A0)+P(A4)=
17
81

∴ξ的分布列是
 ξ  0  2  4
 P  
8
27
 
40
81
17
81
数学期望Eξ=
8
27
+2×
40
81
+4×
17
81
=
148
81
点评:本题考查概率知识的求解,考查互斥事件的概率公式,考查离散型随机变量的分布列与期望,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•天津)某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.
(1)求应从小学、中学、大学中分别抽取的学校数目;
(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析.
(ⅰ)列出所有可能的抽取结果;
(ⅱ)求抽取的2所学校均为小学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天津模拟)盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球.规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分.现从盒内任取3个球
(Ⅰ)求取出的3个球中至少有一个红球的概率;
(Ⅱ)求取出的3个球得分之和恰为1分的概率;
(Ⅲ)设ξ为取出的3个球中白色球的个数,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天津模拟)已知某单位有50名职工,现要从中抽取10名职工,将全体职工随机按1~50编号,并按编号顺序平均分成10组,按各组内抽取的编号依次增加5进行系统抽样.
(Ⅰ)若第1组抽出的号码为2,写出所有被抽出职工的号码;
(Ⅱ)分别统计这10名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示,求该样本的方差;
(Ⅲ)在(Ⅱ)的条件下,从体重不轻于73公斤(≥73公斤)的职工中抽取2人,求体重为76公斤的职工被抽取到的概率.

查看答案和解析>>

同步练习册答案