精英家教网 > 高中数学 > 题目详情
已知圆C:(x﹣1)2+(y﹣2)2=25及直线l:(2m+1)x+(m+1)y=7m+4.(m∈R)
(1)证明:不论m取什么实数,直线l与圆C恒相交;
(2)求直线l与圆C所截得的弦长的最短长度及此时直线l的方程.
解:(1)直线方程l:(2m+1)x+(m+1)y=7m+4,
可以改写为m(2x+y﹣7)+x+y﹣4=0,
所以直线必经过直线2x+y﹣7=0和x+y﹣4=0的交点.
由方程组解得
即两直线的交点为A(3,1),
又因为点A(3,1)与圆心C(1,2)的距离
所以该点在C内,故不论m取什么实数,直线l与圆C恒相交.
(2)连接AC,当直线l是AC的垂线时,此时的直线l与圆C相交于B、D.
BD为直线l被圆所截得的最短弦长.
此时,
所以.即最短弦长为
又直线AC的斜率
所以直线BD的斜率为2.
此时直线方程为:y﹣1=2(x﹣3),即2x﹣y﹣5=0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:(x+1)2+y2=25及点A(1,0),Q为圆上一点,AQ的垂直平分线交CQ于M,则点M的轨迹方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B
(1)当弦AB被点P平分时,写出直线l的方程;
(2)当直线l的倾斜角为45°时,求弦AB的长.
(3)设圆C与x轴交于M、N两点,有一动点Q使∠MQN=45°.试求动点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.
(1)当l经过圆心C时,求直线l的方程;
(2)当弦AB的长为4
2
时,写出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+(y-2)2=5,直线l:x-y=0,则C关于l的对称圆C′的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+(y+1)2=1,那么圆心C到坐标原点O的距离是
2
2

查看答案和解析>>

同步练习册答案