【题目】在平面直角坐标系
中,点
是直线
上的动点,
为定点,点
为
的中点,动点
满足
,且
,设点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
的直线交曲线
于
,
两点,
为曲线
上异于
,
的任意一点,直线
,
分别交直线
于
,
两点.问
是否为定值?若是,求
的值;若不是,请说明理由.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,四边形
是直角梯形,
,
,
底面
,
,
,
是
的中点.
![]()
(1)求证:平面
平面
;
(2)若二面角
的余弦值为
,求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1、F2是椭圆
的左、右焦点,A是椭圆上位于第一象限内的一点,点B也在椭圆上,且满足
(O是坐标原点),
若椭圆的离心率等于![]()
(1)求直线AB的方程;
(2)若三角形ABF2的面积等于
,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
的前
项和为
,
,
.
(1)求数列
的通项公式;
(2)设数列
满足:
对于任意
,都有
成立.
①求数列
的通项公式;
②设数列
,问:数列
中是否存在三项,使得它们构成等差数列?若存在,求出这三项;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的的参数方程为
(其中
为参数),以坐标原点
为极点,
轴的正半轴为极轴的极坐标系中,点
的极坐标为
,直线
经过点
.曲线
的极坐标方程为
.
(1)求直线
的普通方程与曲线
的直角坐标方程;
(2)过点
作直线
的垂线交曲线
于
两点(
在
轴上方),求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大型运动会的组委会为了搞好接待工作,招募了30名男志愿者和20名女志愿者.调查发现,这些志愿者中有部分志愿者喜爱运动,另一部分志愿者不喜欢运动,并得到了如下等高条形图和
列联表:
![]()
喜爱运动 | 不喜爱运动 | 总计 | |
男生 |
|
| 30 |
女生 |
|
| 20 |
总计 | 50 |
(1)求出列联表中![]()
![]()
![]()
的值;
(2)是否有
的把握认为喜爱运动与性别有关?附:参考公式和数据:
,(其中
)
0.500 | 0.100 | 0.050 | 0.010 | 0.001 | |
| 0.455 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com