精英家教网 > 高中数学 > 题目详情
函数f(x)=(x≤1)的反函数是( )
A.f-1(x)=x2+1(x≥0)
B.f-1(x)=-x2+1(x≥0)
C.f-1(x)=x2+1(x≥1)
D.f-1(x)=-x2+1(x≥1)
【答案】分析:由已知函数f(x)=(x≤1),我们选用y表示x,则可能得到函数f(x)=(x≤1)的反函数的解析式,然后根据互为反函数的两个函数定义域和值域对调,求出反函数的定义域,即可得到答案.
解答:解:由已知中函数f(x)=(x≤1)
我们易得函数的值域为[0,+∞)
令y
则y2=1-x
则x=1-y2
即函数f(x)=(x≤1)的反函数是f-1(x)=-x2+1(x≥0)
故选B
点评:本题考查的知识点是反函数,求反函数的步骤是:一、反表示;二、互换x,y;三、确定反函数的定义域(即原函数的值域.)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的函数f(x)满足条件:
[f(x1)-f(x2)](x1-x2)>0,(x1x2R+x1x2)
②f(x)+f(-x)=0(x∈R); 
③f(-3)=0.
则不等式x•f(x)<0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-2x2-4x-7.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)求a>2时,证明:对于任意的x>2且x≠a,恒有f(x)>f(a)+f'(a)(x-a);
(Ⅲ)设x0是函数y=f(x)的零点,实数α满足f(α)>0,β=α-
f(α)f′(α)
,试探究实数α、β、x0的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<
π
2
)的振幅为
2
,周期为π,且图象关于直线x=
π
8
对称.
(Ⅰ)求f(x)的解析式;
(Ⅱ)将函数y=sinx的图象作怎样的变换可以得到f(x)的图象?

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案