精英家教网 > 高中数学 > 题目详情
已知正三棱锥P—ABC的各棱长都为2,底面为ABC,棱PC的中点为M,从A点出发,在三棱锥P—ABC的表面运动,经过棱PB到达点M的最短路径之长为        
解:正三棱锥P—ABC的各棱长都为2,底面为ABC,棱PC的中点为M,从A点出发,在三棱锥P—ABC的表面运动,经过棱PB到达点M的最短路径就是得到展开图,利用两点距离得到最小值为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,多面体EF﹣ABCD中,底面ABCD为等腰梯形,AB∥CD,四边形ACFE为矩形,且平面ACFE⊥平面ABCD,AD=DC=BC=CF=1,AC⊥BC,∠ADC=120°
(1)求证:BC⊥AF
(2)求平面BDF与平面CDF所成夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是直角梯形,平面,点的中点,且.

(1)求四棱锥的体积;
(2)求证:∥平面
(3)求直线和平面所成的角是正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱AA′=1,点M,N分别为的中点。
(Ⅰ)证明:∥平面
(Ⅱ)求三棱锥的体积。(锥体体积公式V=Sh,其中S为底面面积,h为高)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在下列四个正方体中,能得出异面直线AB⊥CD的是(   ) 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

球内有一内接正方体,正方体的一个面在球的底面圆上,若正方体的一边长为,则球的体积是_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直二面角A—BD—C,平面ABD⊥平面BCD,若其中给定 AB="AD" =2,,BC⊥CD .
(Ⅰ)求AC与平面BCD所成的角;
(Ⅱ)求点A到BC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间三条直线,如果其中一条直线和其它两条直线都相交,则这三条直线能确定平面的个数是(   )
A.1个或3个B.2个或3个C.1个或2个或3个D.1个或2个或3个或4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知一个圆锥的侧面展开图是圆心角为120°的扇形、底面圆的直径为2,则该圆锥的体积为             .

查看答案和解析>>

同步练习册答案