精英家教网 > 高中数学 > 题目详情
Sn=1+++…+等于(    )

A.              B.             C.              D.

B

解析:an=,

∴Sn=2(1-+-+…+-)

=2(1-)=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}与{bn}中,a1=1,b1=4,数列{an}的前n项和Sn满足nSn+1-(n+3)Sn=0,2an+1为bn与bn+1的等比中项,n∈N*.
(Ⅰ)求a2,b2的值;
(Ⅱ)求数列{an}与{bn}的通项公式;
(Ⅲ)设Tn=(-1)a1b1+(-1)a2b2+…+(-1)anbn,n∈N*.证明|Tn|<2n2,n≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的各项均为正数,其前n项和为Sn,且an与1的等差中项等于Sn与1的等比中项.
(1)求a1的值及数列{an}的通项公式;
(2)设bn=
2
1+an
 
+(-1)n-1×2n+1λ
,若数列{bn}是单调递增数列,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设P1,P2,P3,…Pn,是曲线y=
x
上的点列,Q1,Q2,Q3,…Qn是x轴的正半轴上的点列,O为坐标原点,且△OQ1P1,△Q1Q2P2,…,△QnQn+1Pn+1是等边三角形,设它们的边长分别为a1,a2,a3,…an,求{an}前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,前n项和sn满足sn+1-sn=2n+1(n∈N*).
(Ⅰ)求数列{an}的通项公式及前n项和sn
(Ⅱ)若S1、t(S3+S4)(t>0)的等差中项不大于它们的等比中项,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是公差不为零的等差数列,a1=1,且a3是a1和a9的等比中项.
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Snf(n)=
Sn(n+18)Sn+1
,试问当n为何值时,f(n)最大?并求出f(n)的最大值.

查看答案和解析>>

同步练习册答案