Èçͼ£¬P1(x1£¬y1)£¬P2(x2£¬y2)£¬¡­£¬Pn(xn£¬yn)(0£¼y1£¼y2£¼¡­£¼yn£¬n¡ÊN*)ÊÇÇúÏßC£ºy2=3x(y¡Ý0)ÉϵÄn¸öµã£¬µãAi(ai£¬0)(i=1£¬2£¬3£¬¡­£¬n)ÔÚxÖáµÄÕý°ëÖáÉÏ£¬¡÷Ai-1AiPiÊÇÕýÈý½ÇÐÎ(A0ÊÇ×ø±êÔ­µã)£¬
(1)Çóa1£¬a2£¬a3£»
(2)Çó³öµãAn(an£¬0)(n¡ÊN*)µÄºá×ø±êan¹ØÓÚnµÄ±í´ïʽ£»
(3)É裬Èô¶ÔÈÎÒâÕýÕûÊýn£¬µ±m¡Ê[-1£¬1]ʱ£¬²»µÈʽt2-mt+£¾bnºã³ÉÁ¢£¬ÇóʵÊýtµÄÈ¡Öµ·¶Î§¡£

½â£º(1)a1=2£¬a2=6£¬a3=12£»
(2)ÒÀÌâÒâAn(an£¬0)£¬£¬
Ôò£¬
ÔÚÕýÈý½ÇÐÎÖУ¬ÓУ¬
¡à£¬
¡à£¬
¡à£¬¢Ù
ͬÀí¿ÉµÃ£¬¢Ú
¢Ú-¢Ù²¢±äÐεã¬
£¬
¡à£¬
¡à£¬
¡àÊýÁÐ{an+1-an}ÊÇÒÔa2-a1=4ΪÊ×Ï¹«²îΪ2µÄµÈ²îÊýÁУ¬
¡à£¬
¡à
£¬
¡à¡£
(3)£¬
¡à£¬
¡à

£¬
¡ßµ±n¡ÊN*ʱ£¬ÉÏʽºãΪ¸ºÖµ£¬
¡àµ±n¡ÊN*ʱ£¬bn+1£¼bn£¬
¡àÊýÁÐ{bn}ÊǵݼõÊýÁУ¬
¡àbnµÄ×î´óֵΪ£¬
Èô¶ÔÈÎÒâÕýÕûÊýn£¬µ±m¡Ê[-1£¬1]ʱ£¬²»µÈʽºã³ÉÁ¢£¬
Ôò²»µÈʽÔÚm¡Ê[-1£¬1]ʱºã³ÉÁ¢£¬
¼´²»µÈʽt2-2mt£¾0ÔÚm¡Ê[-1£¬1]ʱºã³ÉÁ¢£¬
Éèf(m)=t2-2mt£¬Ôòf(1)£¾0ÇÒf(-1)£¾0£¬
¡à£¬½âÖ®£¬µÃt£¼-2»òt£¾2£¬
¼´tµÄÈ¡Öµ·¶Î§ÊÇ(-¡Þ£¬-2)¡È(2£¬+¡Þ)¡£

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬P1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬¡­£¬Pn£¨xn£¬yn£©£¨0£¼y1£¼y2£¼¡­£¼yn£©ÊÇÇúÏßC£ºy2=3x£¨y¡Ý0£©ÉϵÄn¸öµã£¬µãAi£¨ai£¬0£©£¨i=1£¬2£¬3£¬¡­£¬n£©ÔÚxÖáµÄÕý°ëÖáÉÏ£¬ÇÒ¡÷Ai-1AiPiÊÇÕýÈý½ÇÐΣ¨A0ÊÇ×ø±êÔ­µã£©£®
£¨¢ñ£©Çó³öa1£¬a2£¬a3£¬²¢²ÂÏëan¹ØÓÚnµÄ±í´ïʽ£¨²»ÐèÖ¤Ã÷£©£»
£¨¢ò£©Éèbn=
1
an+1
+
1
an+2
+
1
an+3
+¡­+
1
a2n
£¬Èô¶ÔÈÎÒâµÄÕýÕûÊýn£¬µ±m¡Ê[-1£¬1]ʱ£¬²»µÈʽt2-2mt+
1
6
£¾bn
ºã³ÉÁ¢£¬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£®
¾«Ó¢¼Ò½ÌÍø

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬P1£¨x1£¬y1£©¡¢P2£¨x2£¬y2£©¡¢¡­¡¢Pn£¨xn£¬yn£©£¨0£¼y1£¼y2£¼¡­£¼yn£© ÊÇÇúÏßC£ºy2=3x£¨y¡Ý0£©ÉϵÄn¸öµã£¬µãAi£¨ai£¬0£©£¨i=1£¬2£¬3£¬¡­n£©ÔÚxÖáµÄÕý°ëÖáÉÏ£¬ÇÒ¡÷Ai-1AiPiÊÇÕýÈý½ÇÐΣ¨A0ÊÇ×ø±êÔ­µã£©£®
£¨1£©Çóa1¡¢a2¡¢a3µÄÖµ£»
£¨2£©Çó³öµãAn£¨an£¬0£©£¨n¡ÊN+£©µÄºá×ø±êanºÍµãAn-1£¨an-1£¬0£©£¨n£¾0£¬n¡ÊN+£©ºá×ø±êan-1µÄ¹Øϵʽ£»
£¨3£©¸ù¾Ý£¨1£©µÄ½áÂÛ²ÂÏëan¹ØÓÚnµÄ±í´ïʽ£¬²¢ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•Õ¢±±Çø¶þÄ££©Èçͼ£¬P1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬¡­£¬Pn£¨xn£¬yn£©£¬¡­ÊÇÇúÏßC£ºy2=
1
2
x(y¡Ý0)
Éϵĵ㣬A1£¨a1£¬0£©£¬A2£¨a2£¬0£©£¬¡­£¬An£¨an£¬0£©£¬¡­ÊÇxÖáÕý°ëÖáÉϵĵ㣬ÇÒ¡÷A0A1P1£¬¡÷A1A2P2£¬¡­£¬¡÷An-1AnPn£¬¡­¾ùΪб±ßÔÚxÖáÉϵĵÈÑüÖ±½ÇÈý½ÇÐΣ¨A0Ϊ×ø±êÔ­µã£©£®
£¨1£©Ð´³öan-1¡¢anºÍxnÖ®¼äµÄµÈÁ¿¹Øϵ£¬ÒÔ¼°an-1¡¢anºÍynÖ®¼äµÄµÈÁ¿¹Øϵ£»
£¨2£©²Â²â²¢Ö¤Ã÷ÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©Éèbn=
1
an+1
+
1
an+2
+
1
an+3
+¡­+
1
a2n
£¬¼¯ºÏB={b1£¬b2£¬b3£¬¡­£¬bn£¬¡­}£¬A={x|x2-2ax+a2-1£¼0£¬x¡ÊR}£¬ÈôA¡ÉB=∅£¬Çóʵ³£ÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•Õ¢±±Çø¶þÄ££©Èçͼ£¬P1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬¡­£¬Pn£¨xn£¬yn£©£¬¡­ÊÇÇúÏßC£ºy2=
1
2
x(y¡Ý0)
Éϵĵ㣬A1£¨a1£¬0£©£¬A2£¨a2£¬0£©£¬¡­£¬An£¨an£¬0£©£¬¡­ÊÇxÖáÕý°ëÖáÉϵĵ㣬ÇÒ¡÷A0A1P1£¬¡÷A1A2P2£¬¡­£¬¡÷An-1AnPn£¬¡­¾ùΪб±ßÔÚxÖáÉϵĵÈÑüÖ±½ÇÈý½ÇÐΣ¨A0Ϊ×ø±êÔ­µã£©£®
£¨1£©Ð´³öan-1¡¢anºÍxnÖ®¼äµÄµÈÁ¿¹Øϵ£¬ÒÔ¼°an-1¡¢anºÍynÖ®¼äµÄµÈÁ¿¹Øϵ£»
£¨2£©ÇóÖ¤£ºan=
n(n+1)
2
£¨n¡ÊN*£©£»
£¨3£©Éèbn=
1
an+1
+
1
an+2
+
1
an+3
+¡­+
1
a2n
£¬¶ÔËùÓÐn¡ÊN*£¬bn£¼log8tºã³ÉÁ¢£¬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸