精英家教网 > 高中数学 > 题目详情
已知以原点O为中心的双曲线的一条准线方程为,离心率e=
(Ⅰ)求该双曲线的方程;
(Ⅱ)如图,点A的坐标为,B是圆x2+(y-2=1上的点,点M在双曲线右支上,求|MA|+|MB|的最小值,并求此时M点的坐标。

解:(Ⅰ)由题意可知,双曲线的焦点在x轴上,
故可设双曲线的方程为

由准线方程为

解得,从而b=2,
∴该双曲线的方程为
(Ⅱ)设点D的坐标为
则点A、D为双曲线的焦点,|MA|-|MD|=2a=2,
所以
∵B是圆上的点,其圆心为,半径为1,

从而
当M,B在线段CD上时取等号,此时|MA|+|MB|的最小值为
∵直线CD的方程为
因点M在双曲线右支上,故x>0,
由方程组,解得
所以M点的坐标为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知以原点O为中心的椭圆的一条准线方程为y=
4
3
3
,离心率e=
3
2
,M是椭圆上的动点
(Ⅰ)若C,D的坐标分别是(0,-
3
),(0,
3
)
,求|MC|•|MD|的最大值;
(Ⅱ)如题(20)图,点A的坐标为(1,0),B是圆x2+y2=1上的点,N是点M在x轴上的射影,点Q满足条件:
OQ
=
OM
+
ON
QA
BA
=0
、求线段QB的中点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知以原点O为中心的双曲线的一条准线方程为x=
5
5
,离心率e=
5

(Ⅰ)求该双曲线的方程;
(Ⅱ)如图,点A的坐标为(-
5
,0)
,B是圆x2+(y-
5
)2=1
上的点,点M在双曲线右支上,|MA|+|MB|的最小值,并求此时M点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知以原点O为中心的椭圆,它的短轴长为,右焦点(c>0),它的长轴长为2a(a>c>0),直线与x轴相交于点A,,过点A的直线与椭圆相交于P.Q两点.

(Ⅰ) 求椭圆的方程和离心率;

(Ⅱ) 若,求直线PQ的方程;

(Ⅲ)设,过点P且平行于直线的直线与椭圆相交于另一点M,证明:

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南师大附中高三(下)周周练数学试卷(解析版) 题型:解答题

已知以原点O为中心的椭圆的一条准线方程为,离心率,M是椭圆上的动点
(Ⅰ)若C,D的坐标分别是,求|MC|•|MD|的最大值;
(Ⅱ)如题(20)图,点A的坐标为(1,0),B是圆x2+y2=1上的点,N是点M在x轴上的射影,点Q满足条件:、求线段QB的中点P的轨迹方程.

查看答案和解析>>

同步练习册答案