精英家教网 > 高中数学 > 题目详情
10.求下列函数的导数:
(1)y=3x3-$\frac{1}{\sqrt{x}}$+lnc;
(2)y=x(1-cosx)lnx;
(3)y=$\frac{tanx}{x}$;
(4)y=$\sqrt{x+\sqrt{x+\sqrt{x}}}$.

分析 根据复合函数的求导法则和导数的运算法则求导即可.

解答 解:(1)y′=9x2+$\frac{1}{2}$•${x}^{-\frac{3}{2}}$=9x2+$\frac{\sqrt{x}}{2{x}^{2}}$
(2)y=x(1-cosx)lnx=xlnx-xlnxcosx,
∴y′=1+lnx-(xlnx)′cosx-xlnx(cosx)′=1+lnx-(1+lnx)cosx+xlnxsinx,
(3)y=$\frac{tanx}{x}$=$\frac{sinx}{cosx}$•$\frac{1}{x}$
∴y′=($\frac{sinx}{cosx}$)′$\frac{1}{x}$+$\frac{sinx}{cosx}$($\frac{1}{x}$)′=$\frac{co{s}^{2}x+si{n}^{2}x}{co{s}^{2}x}$•$\frac{1}{x}$-$\frac{tanx}{{x}^{2}}$=$\frac{1}{xco{s}^{2}x}$-$\frac{tanx}{{x}^{2}}$;
(4)y=$\sqrt{x+\sqrt{x+\sqrt{x}}}$.
∴y′=$\frac{1}{2}$(x+$\sqrt{x+\sqrt{x}}$)${\;}^{-\frac{1}{2}}$•(x+$\sqrt{x+\sqrt{x}}$)′=$\frac{1}{2}$(x+$\sqrt{x+\sqrt{x}}$)${\;}^{-\frac{1}{2}}$•[1+$\frac{1}{2}$(x+$\sqrt{x}$)${\;}^{-\frac{1}{2}}$•(x+$\sqrt{x}$)′]=$\frac{1}{2}$(x+$\sqrt{x+\sqrt{x}}$)${\;}^{-\frac{1}{2}}$•[1+$\frac{1}{2}$(x+$\sqrt{x}$)${\;}^{-\frac{1}{2}}$•(1+$\frac{1}{2}$x${\;}^{-\frac{1}{2}}$)].

点评 本题考查了导数的运算法则和复合函数的求导法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.对任意x∈(0,$\frac{π}{2}$),不等式tanx•f(x)<f′(x)恒成立,则下列不等式错误的是(  )
A.f($\frac{π}{3}$)>$\sqrt{2}$f($\frac{π}{4}$)B.f($\frac{π}{3}$)>2cos1•f(1)C.2cos1•f(1)>$\sqrt{2}$f($\frac{π}{4}$)D.$\sqrt{2}$f($\frac{π}{4}$)<$\sqrt{3}$f($\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设动点M到两个定点F1(-$\sqrt{13}$,0),F2($\sqrt{13},0$)的距离之差等于4,求动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数y=e|x| (X∈[a,b])的值域是[1,e2],那么实数a,b应满足什么条件?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=5$\sqrt{3}$sinxcosx+5cos2x-$\frac{5}{2}$.
(1)求函数f(x)的最小正周期和图象的对称轴方程;
(2)当$\frac{π}{6}$≤x≤$\frac{π}{2}$时,若f(x)=2,求函数f(x-$\frac{π}{12}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知△ABC的面积为10,P是△ABC所在平面上的一点,满足$\overrightarrow{PA}$+$\overrightarrow{PB}$+2$\overrightarrow{PC}$=3$\overrightarrow{AB}$,则△ABP的面积为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=$\frac{x+a}{x+1}$在(-∞,-1),(-1,+∞)上单调递增,则实数a的取值范围(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤1}\\{1+lo{g}_{2}(x+2),x>1}\end{array}\right.$,则f(log2$\frac{1}{3}$)+f(2)=$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求函数y=${2}^{\frac{1}{{x}^{2}+1}}$的定义域和值域.

查看答案和解析>>

同步练习册答案