精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=5$\sqrt{3}$sinxcosx+5cos2x-$\frac{5}{2}$.
(1)求函数f(x)的最小正周期和图象的对称轴方程;
(2)当$\frac{π}{6}$≤x≤$\frac{π}{2}$时,若f(x)=2,求函数f(x-$\frac{π}{12}$)的值.

分析 (1)化简可得f(x)=5sin(2x+$\frac{π}{6}$),易得周期和对称轴方程;
(2)由题意可得sin(2x+$\frac{π}{6}$)=$\frac{2}{5}$,可得cos(2x+$\frac{π}{6}$)=-$\frac{\sqrt{21}}{5}$,代入f(x-$\frac{π}{12}$)=5sin2x=sin[(2x+$\frac{π}{6}$)-$\frac{π}{6}$]=$\frac{\sqrt{3}}{2}$sin(2x+$\frac{π}{6}$)-$\frac{1}{2}$cos(2x+$\frac{π}{6}$),计算可得.

解答 解:(1)化简可得f(x)=$\frac{5\sqrt{3}}{2}$sin2x+$\frac{5}{2}$(2cos2x-1)
=$\frac{5\sqrt{3}}{2}$sin2x+$\frac{5}{2}$cos2x=5sin(2x+$\frac{π}{6}$),
∴函数f(x)的最小正周期T=$\frac{2π}{2}$=π,
由2x+$\frac{π}{6}$=kπ+$\frac{π}{2}$可得x=$\frac{kπ}{2}$+$\frac{π}{6}$,
∴对称轴方程为x=$\frac{kπ}{2}$+$\frac{π}{6}$,k∈Z;
(2)当$\frac{π}{6}$≤x≤$\frac{π}{2}$时,f(x)=5sin(2x+$\frac{π}{6}$)=2,
∴sin(2x+$\frac{π}{6}$)=$\frac{2}{5}$,∴cos(2x+$\frac{π}{6}$)=-$\frac{\sqrt{21}}{5}$,
∴f(x-$\frac{π}{12}$)=5sin2x=sin[(2x+$\frac{π}{6}$)-$\frac{π}{6}$]
=$\frac{\sqrt{3}}{2}$sin(2x+$\frac{π}{6}$)-$\frac{1}{2}$cos(2x+$\frac{π}{6}$)
=$\frac{\sqrt{3}}{2}×\frac{2}{5}$-$\frac{1}{2}×(-\frac{\sqrt{21}}{5})$=$\frac{2\sqrt{3}+\sqrt{21}}{10}$.

点评 本题考查三角函数恒等变换,涉及三角函数的周期性和对称轴以及和差角的三角函数公式,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知点A是椭圆$\frac{{x}^{2}}{2}$+y2=1上任意一点,O为坐标原点 求线段OA的中点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求函数y=2x-3的零点大致所在区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.方程2x+x=0的解的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若关于x的方程1g(x-1)+1g(3-x)=lg(x-a)有两个不同的解,求实数a的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求下列函数的导数:
(1)y=3x3-$\frac{1}{\sqrt{x}}$+lnc;
(2)y=x(1-cosx)lnx;
(3)y=$\frac{tanx}{x}$;
(4)y=$\sqrt{x+\sqrt{x+\sqrt{x}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={y|y=x${\;}^{\frac{1}{2}}$,-1≤x≤0},B={y|y=2-$\frac{1}{x}$,0<x≤1},则集合A∪B=(  )
A.(-∞,1]B.[-1,1]C.D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设z=1+2i,i为虚数单位,则z+$\overline{z}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知y=$\sqrt{{x}^{2}-2mx+3}$在(-∞,1]上单调递减,则实数m的取值范围.

查看答案和解析>>

同步练习册答案