精英家教网 > 高中数学 > 题目详情
为保护环境,绿色出行,某高校今年年初成立自行车租赁公司,初期投入36万元,建成后每年收入25万元,该公司第n年需要付出的维修费用记作an万元,已知{an}为等差数列,相关信息如图所示.
(1)设该公司前n年总盈利为y万元,试把y表示成n的函数,并求出y的最大值;(总盈利即n年总收入减去成本及总维修费用)
(2)该公司经过几年经营后,年平均盈利最大,并求出最大值.
考点:数列与不等式的综合,函数模型的选择与应用
专题:应用题,函数的性质及应用
分析:(1)由题意知,每年的费用是以6为首项,2为公差的等差数列,即可把y表示成n的函数,利用配方法求出y的最大值;
(2)年平均盈利
y
n
=-(n+
36
n
)+20,利用基本不等式能求出这种设备使用6年,该公司的年平均获利最大.
解答: 解:(1)由题意,每年的维修费是以6为首项,2为公差的等差数列,
∴an=a1+2(n-1)=2n+4,
∴y=25n-
n[6+(2n+4)]
2
-36=-n2+20n-36=-(n-10)2+64
∴n=10时,y的最大值为64万元;
(2)年平均盈利
y
n
=-(n+
36
n
)+20≤-2
36
n
+20=8,
当且仅当n=
36
n
,即n=6时,年平均收益最大.
所以这种设备使用6年,该公司的年平均获利最大.
点评:本题考查数列在生产实际中的应用,考查基本不等式的运用,确定函数关系是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

k2,m(m∈N),3,5的平均数为3,平面上的直线l过点(0,1),其斜率为等可能取k的值,用X表示坐标原点到l距离的平方,则随机变量X的数学期望E(X)等于(  )
A、
103
270
B、
107
270
C、
111
270
D、
119
270

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(2,-1,3),
b
=(-1,4,-2),
c
=(7,7,λ),若
a
b
c
共面,则实数λ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=-
1
2
x2+(a+2)x+lnx在(1,+∞)上是减函数,则实数a的取值范围是(  )
A、(-∞,-2]
B、(-3,-1)
C、[-1,0)
D、[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了下表:
喜爱打篮球不喜爱打篮球合计
男生19625
女生91625
合计282250
根据表中的数据及随机变量Χ2的公式,算得Χ2≈8.12.临界值表:
P(χ2≥k)0.1000.0500.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828
根据临界值表,你认为喜爱打篮球与性别之间有关系的把握是(  )
A、97.5%B、99%
C、99.5%D、99.9%

查看答案和解析>>

科目:高中数学 来源: 题型:

某供货商拟从码头A发货至其对岸l的两个商场B,C处,通常货物先由A处船运至BC之间的中转站D,再利用车辆转运.如图,码头A与两商场B,C的距离相等,两商场间的距离为20千米,且∠BAC=
π
2
.若一批货物从码头A
至D处的运费为100元/千米,这批货到D后需分别发车2辆、4辆转运至B、C处,每辆汽车运费为25元/千米.设∠ADB=α,该批货总运费为S元.
(Ⅰ)写出S关于α的函数关系式,并指出α的取值范围;
(Ⅱ)当α为何值时,总运费S最小?并求出S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若P为椭圆
x2
25
+
y2
9
=1上一点,F1、F2为焦点,∠F1PF2=60°,求P点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinωx(ω>0).若f(x)的最小值周期是2,则ω=
 
;若将函数f(x)的图象向左平移
π
4
个单位长度,所得图象对应的函数是偶函数,则ω的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,“∠C=90°”是“cosA-cosB=sinB-sinA”的(  )
A、充分不必要条件
B、充要条件
C、必要不充分条件
D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案