精英家教网 > 高中数学 > 题目详情

如图所示,已知椭圆方程为,A为椭圆的左顶点,B、C在椭圆上,若四边形OABC为平行四边形,且,则椭圆的离心率等于(     )

A.    B.    C.   D.   

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,已知椭圆的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,A为椭圆的左顶点,B,C在椭圆上,若四边形OABC为平行四边形,且∠OAB=45°,则椭圆的离心率等于(  )
A、
2
2
B、
3
3
C、
6
3
D、
2
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知椭圆C的离心率为
3
2
,A、B、F分别为椭圆的右顶点、上顶点、右焦点,且S△ABF=1-
3
2

(1)求椭圆C的方程;
(2)已知直线l:y=kx+m被圆O:x2+y2=4所截弦长为2
3
,若直线l与椭圆C交于M、N两点.求△OMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知椭圆C:x2+
y2
a2
=1(a>1)的离心率为e,点F为其下焦点,点A为其上顶点,过F的直线l:y=mx-c(其中c=
a2-1
与椭圆C相交于P,Q两点,且满足
AP
AQ
=
a2(a+c)2-1
2-c2

(1)试用a表示m2
(2)求e的最大值;
(3)若e∈(
1
3
1
2
),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示:已知椭圆方程为
y2
a2
+
x2
b2
=1(a>b>0)
,A,B是椭圆与斜轴的两个交点,F是椭圆的焦点,且△ABF为直角三角形.
(1)求椭圆离心率;
(2)若椭圆的短轴长为2,过F的直线与椭圆相交的弦长为
3
2
2
,试求弦所在直线的方程.

查看答案和解析>>

同步练习册答案