精英家教网 > 高中数学 > 题目详情
方程
1+|x|
=
1-y
表示的曲线是(  )
A、两条线段
B、两条直线
C、两条射线
D、一条射线和一条线段
考点:曲线与方程
专题:综合题
分析:在满足根式有意义的前提下,把方程两边平方,然后去绝对值求得方程所表示的曲线.
解答: 解:由
1+|x|
=
1-y
,得
1-y≥0
1+|x|=1-y
,即
y≤1
|x|=-y

也就是y=±x(y≤0).
∴方程
1+|x|
=
1-y
表示的曲线是两条射线.
故选:C.
点评:本题考查了曲线与方程,关键是注意y的范围,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若各项均为正数的数列{an}满足an-1=sinan(n∈N*),则下列说法中正确的是(  )
A、{an}是单调递减数列
B、{an}是单调递增数列
C、{an}可能是等差数列
D、{an}可能是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
2
+y2=1的左焦点为F,O为坐标原点.
(1)求过点O、F,并且与直线l:x=-2相切的圆的方程;
(2)设过点F且不与坐标轴垂直的直线交椭圆于A、B两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+1
x2
,x∈(-∞,-
1
2
)
ln(x+1),x∈[-
1
2
,+∞)
g(x)=x2-4x-4.设b为实数,若存在实数a,使得f(a)+g(b)=0,则实数b的取值范围是(  )
A、[-1,5]
B、(-∞,-1]
C、[-1,+∞)
D、(-∞,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
2x,x≤
1
2
2-2x,x>
1
2
,则函数g(x)=f(f(x))在[0,1]上的图象总长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点 A(1,-1),B为圆x2+y2=9上的一个动点,则线段AB的中垂线与线段OB的交点E的轨迹是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+φ)+b(ω>0,-
π
2
<φ<
π
2
,b∈R)在一个周期内的部分对应值如下表:
x-
π
4
 0
π
12
π
4
π
2
4
y01
3
2
 2 1 0
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设点A(
π
4
,0),B(-
π
4
,0),对于函数f(x)图象上的点P(x1,f(x1))(-
π
4
<x<
π
4
),若在函数f(x)的图象上存在点Q,满足
PQ
+
AB
=0,求出点Q的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

2n2-2n+83
2n+1
的最小值为
 
(n>0).

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,已知首项为
1
2
,末项为8,公比为2,则此等比数列的项数是
 

查看答案和解析>>

同步练习册答案