精英家教网 > 高中数学 > 题目详情
等比数列{an}中,公比q>0,数列的前n项和为Sn,若a3=2,S4=5S2,求数列{an}的通项公式.
当q=1时,an=a3=2,S4=8,S2=4,不满足S4=5S2(3分)
当q>0且q≠1时,由S4=5S2得:
a1(1-q4)
1-q
=5×
a1(1-q2)
1-q

整理可得1+q2=5,
∴q=2,an=2n-2
∴数列{an}的通项公式是:an=2n-2(10分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等比数列{an}中,a2=18,a4=8,则公比q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a1=0,an+1=
1
2-an

(Ⅰ)求数列{an}的通项公式an
(Ⅱ)设数列{an}的前n项和为Sn,证明:Sn<n-ln(n+1);
(Ⅲ)设bn=an
9
10
n,证明:对任意的正整数n、m,均有|bn-bm|<
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a3=2,a7=32,则a5=
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,an=2×3n-1,则由此数列的奇数项所组成的新数列的前n项和为
9n-1
4
9n-1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,已知对n∈N*有a1+a2+…+an=2n-1,那么
a
2
1
+
a
2
2
+…+
a
2
n
等于(  )

查看答案和解析>>

同步练习册答案