精英家教网 > 高中数学 > 题目详情
定义在(-1,1)上的函数f(x)是奇函数,且在(-1,1)上f(x)是减函数,满足条件f(1-a)+f(1-a2)<0的实数a取值范围是(  )
A.(0,1)B.(-2,1)C.[0,1]D.[-2,1]
由f(1-a)+f(1-a2)<0,得f(1-a)<-f(1-a2).
∵f(x)是奇函数,∴-f(1-a2)=f(a2-1).
于是f(1-a)<f(a2-1).
又由于f(x)在(-1,1)上是减函数,
因此
1-a>a2-1
1-a<1
a2-1>-1

解得0<a<1.
故选A.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
ax+b
1+x2
是定义在(-1,1)上的奇函数,且f(
1
2
)=
2
5

①求函数f(x)的解析式;
②判断函数f(x)在(-1,1)上的单调性并用定义证明;
③解关于x的不等式f(log2x-1)+f(log2x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在(-1,1)上的奇函数,当x∈(0,1)时,f(x)=2x2-2x,求f(x)在(-1,1)上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若m、n∈[-1,1],m+n≠0,>0.

(1)证明f(x)在[-1,1]上是增函数;

(2)解不等式f(x+)<f().

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省青岛市即墨一中高一(上)期中数学试卷(解析版) 题型:解答题

函数f(x)=是定义在(-1,1)的奇函数,且f()=
(1)确定f(x)的解析式;
(2)判断函数在(-1,1)上的单调性;
(3)解不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年黑龙江省哈尔滨三中高一(上)段考数学试卷(解析版) 题型:解答题

函数f(x)=是定义在(-1,1)的奇函数,且f()=
(1)确定f(x)的解析式;
(2)判断函数在(-1,1)上的单调性;
(3)解不等式f(t-1)+f(t)<0.

查看答案和解析>>

同步练习册答案