(本题满分14分).
某校从高一年级学生中随机抽取60名学生,将其期中考试的数学成绩(均为整数)分成六段,,…,后得到如下频率分布直方图.
(1)求分数在内的频率;
(2)用分层抽样的方法在80分以上(含80分)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任意选取2人,求其中恰有1人的分数不低于90分的概率.
(14分).解:(1)分数在内的频率为:
.……… 3分
(2). 由题意,分数段的人数为:人;………4分
分数段的人数为:人; ………………5分
∵用分层抽样的方法在80分以上(含80分)的学生中抽取一个容量为6的样本,
∴分数段抽取=5人, ……7分
分数段抽取=1人, ……9分
抽取分数段5人,分别记为a,b,c,d,e;
抽取分数段抽取1人记为m. ………………10分
因为从样本中任取2人,其中恰有1人的分数不低于90分,
则另一人的分数一定是在分数段,所以只需在分数段抽取的5人中确定1人.
设“从样本中任取2人,其中恰有1人的分数不低于90分为”事件, ………………11分
则基本事件空间包含的基本事件有:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e),(a,m),(b,m),(c,m),(d,m),(e,m)共15种.……12分
事件包含的基本事件有(a,m),(b,m),(c,m),(d,m),(e,m)共5种. ………13分
∴恰有1人的分数不低于90分的概率为. ……………14分
【解析】略
科目:高中数学 来源: 题型:
π |
3 |
|
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,为上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;(2)求三棱锥D-AEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题
(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求实数m的值
(Ⅱ)若ACRB,求实数m的取值范围
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题
(本题满分14分)
已知点是⊙:上的任意一点,过作垂直轴于,动点满足。
(1)求动点的轨迹方程;
(2)已知点,在动点的轨迹上是否存在两个不重合的两点、,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题
(本题满分14分)已知函数.
(1)求函数的定义域;
(2)判断的奇偶性;
(3)方程是否有根?如果有根,请求出一个长度为的区间,使
;如果没有,请说明理由?(注:区间的长度为).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com