精英家教网 > 高中数学 > 题目详情

(本题满分14分).

某校从高一年级学生中随机抽取60名学生,将其期中考试的数学成绩(均为整数)分成六段,…,后得到如下频率分布直方图.

(1)求分数在内的频率;

(2)用分层抽样的方法在80分以上(含80分)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任意选取2人,求其中恰有1人的分数不低于90分的概率.

 

【答案】

(14分).解:(1)分数在内的频率为:

.……… 3分

(2).   由题意,分数段的人数为:人;………4分

 分数段的人数为:人;  ………………5分

∵用分层抽样的方法在80分以上(含80分)的学生中抽取一个容量为6的样本,

分数段抽取=5人,    ……7分

分数段抽取=1人,    ……9分

抽取分数段5人,分别记为a,b,c,d,e;

抽取分数段抽取1人记为m.           ………………10分

因为从样本中任取2人,其中恰有1人的分数不低于90分,

则另一人的分数一定是在分数段,所以只需在分数段抽取的5人中确定1人.

设“从样本中任取2人,其中恰有1人的分数不低于90分为”事件,                                 ………………11分

则基本事件空间包含的基本事件有:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e),(a,m),(b,m),(c,m),(d,m),(e,m)共15种.……12分

事件包含的基本事件有(a,m),(b,m),(c,m),(d,m),(e,m)共5种. ………13分

∴恰有1人的分数不低于90分的概率为.             ……………14分

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分14分
A.选修4-4:极坐标与参数方程在极坐标系中,直线l 的极坐标方程为θ=
π
3
(ρ∈R ),以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为
x=2cosα
y=1+cos2α
(α 参数).求直线l 和曲线C的交点P的直角坐标.
B.选修4-5:不等式选讲
设实数x,y,z 满足x+y+2z=6,求x2+y2+z2 的最小值,并求此时x,y,z 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABEAEEBBC=2,上的点,且BF⊥平面ACE

(1)求证:AEBE;(2)求三棱锥DAEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题

(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求实数m的值

(Ⅱ)若ACRB,求实数m的取值范围

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题

(本题满分14分)

已知点是⊙上的任意一点,过垂直轴于,动点满足

(1)求动点的轨迹方程; 

(2)已知点,在动点的轨迹上是否存在两个不重合的两点,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题

(本题满分14分)已知函数.

(1)求函数的定义域;

(2)判断的奇偶性;

(3)方程是否有根?如果有根,请求出一个长度为的区间,使

;如果没有,请说明理由?(注:区间的长度为).

 

查看答案和解析>>

同步练习册答案