精英家教网 > 高中数学 > 题目详情
设A、B、C、D为球O上四点,若AB、AC、AD两两互相垂直,且AB=AC=
6
,AD=2,则A、D两点间的球面距离
 
分析:设球O的半径为R,根据AB、AC、AD两两互相垂直,可得(2R)2=AB2+AC2+AD2=16,解得R=2.由此可得△AOD是等边三角形,球心角∠AOD=60°,利用弧长公式即可算出A、D两点间的球面距离.
解答:解:精英家教网连结OA、OD,
∵AB、AC、AD两两互相垂直,
∴设球O的半径为R,
则(2R)2=AB2+AC2+AD2=6+6+4=16,
即4R2=16,解得R=2
∵OA=OD=AD=2,
∴△AOD是等边三角形,可得球心角∠AOD=60°,
因此A、D两点间的球面距离为
60πR
180
=
3

故答案为:
3
点评:本题给出球面上过同一点且两两垂直的三条弦AB、AC、AD的长度,求A、D两点间的球面距离.着重考查了球的有关性质、球面距离及其计算等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,设A、B、C、D为球O上四点,若AB、AC、AD两两互相垂直,且AB=AC=
6
 AD=2
,则OD与平面ABC所成的角为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广安二模)如图,设A,B,C,D为球O上四点,AB,AC,AD两两互相垂直,且AB=AC=
6
,AD=2,则A、D两点间的球面距离为(  )

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省内江市、广安市高三第二次模拟联考试题理科数学(解析版) 题型:选择题

如图,设A,B,C,D为球O上四点,AB,AC,AD两两互相垂直,且AB=AC=,AD=2,则A、D两点间的球面距离为

A、   B、  C、  D、 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年内蒙古呼伦贝尔市高三第四次月考理科数学试卷 题型:填空题

如图, 设A、B、C、D为球O上四点,若AB、AC、AD两两互相垂直,且,则AD两点间的球面距离         

 

 

 

查看答案和解析>>

同步练习册答案