精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= (a∈R),曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直. (Ⅰ)试比较20162017与20172016的大小,并说明理由;
(Ⅱ)若函数g(x)=f(x)﹣k有两个不同的零点x1 , x2 , 证明:x1x2>e2

【答案】解:(Ⅰ)函数f(x)= , 所以 ,又由切线与直线x+y+1=0垂直,
可得f′(1)=1,即 ,解得a=0.
此时
令f'(x)>0,即1﹣lnx>0,解得0<x<e;
令f'(x)<0,即1﹣lnx<0,解得x>e,
所以f(x)的增区间为(0,e),减区间为(e,+∞).
所以f>f,

2017ln2016>2016ln2017,即有20162017>20172016
(Ⅱ)证明:不妨设x1>x2>0,因为g(x1)=g(x2)=0,
所以化简得lnx1﹣kx1=0,lnx2﹣kx2=0.
可得lnx1+lnx2=k(x1+x2),lnx1﹣lnx2=k(x1﹣x2),
要证明, ,即证明lnx1+lnx2>2,也就是k(x1+x2)>2.
因为 ,即证
即ln ,令 ,则t>1,即证
(t>1).
=
故函数h(t)在(1,+∞)是增函数,
所以h(t)>h(1)=0,即 得证.
所以
【解析】(Ⅰ)求出f(x)的导数,由两直线垂直的条件:斜率相等,即可得到切线的斜率和切点坐标,进而f(x)的解析式和导数,求出单调区间,可得f>f,即可得到20162017与20172016的大小;(Ⅱ)运用分析法证明,不妨设x1>x2>0,由根的定义可得所以化简得lnx1﹣kx1=0,lnx2﹣kx2=0.可得lnx1+lnx2=k(x1+x2),lnx1﹣lnx2=k(x1﹣x2),要证明, ,即证明lnx1+lnx2>2,也就是k(x1+x2)>2.求出k,即证 ,令 ,则t>1,即证 .令 (t>1).求出导数,判断单调性,即可得证.
【考点精析】掌握利用导数研究函数的单调性是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点P( )在椭圆E: + =1(a>b>0)上,F为右焦点,PF垂直于x轴,A,B,C,D为椭圆上四个动点,且AC,BD交于原点O.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设A(x1 , y1),B(x2 , y2),满足 = ,判断kAB+kBC的值是否为定值,若是,求出此定值,并求出四边形ABCD面积的最大值,否则请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的可导函数f(x),其导函数记为f'(x),满足f(x)+f(2﹣x)=(x﹣1)2 , 且当x≤1时,恒有f'(x)+2<x.若 ,则实数m的取值范围是(
A.(﹣∞,1]
B.
C.[1,+∞)
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,满足
(1)求∠ABC;
(2)若 ,D为△ABC外一点,DB=2,DC=1,求四边形ABDC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学上称函数y=kx+b(k,b∈R,k≠0)为线性函数.对于非线性可导函数f(x),在点x0附近一点x的函数值f(x),可以用如下方法求其近似代替值:f(x)≈f(x0)+f'(x0)(x﹣x0).利用这一方法, 的近似代替值(
A.大于m
B.小于m
C.等于m
D.与m的大小关系无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=cos2x图象向左平移φ(0<φ< )个单位后得到函数g(x)的图象,若函数g(x)在区间[﹣ ]上单调递减,且函数g(x)的最大负零点在区间(﹣ ,0)上,则φ的取值范围是(
A.[ ]
B.[
C.( ]
D.[

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1(﹣c,0)、F2(c、0)分别是椭圆G: + =1(0<b<a<3)的左、右焦点,点P(2, )是椭圆G上一点,且|PF1|﹣|PF2|=a.
(1)求椭圆G的方程;
(2)设直线l与椭圆G相交于A、B两点,若 ,其中O为坐标原点,判断O到直线l的距离是否为定值?若是,求出该定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知图1中,四边形 ABCD是等腰梯形,AB∥CD,EF∥CD,DM⊥AB于M、交EF于点N,DN=3 ,MN= ,现将梯形ABCD沿EF折起,记折起后C、D为C'、D'且使D'M=2 ,如图2示.
(Ⅰ)证明:D'M⊥平面ABFE;,
(Ⅱ)若图1中,∠A=60°,求点M到平面AED'的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥侧面A1ABB1 , 且AA1=AB=2.

(1)求证:AB⊥BC;
(2)若直线AC与平面A1BC所成的角为 ,求锐二面角A﹣A1C﹣B的大小.

查看答案和解析>>

同步练习册答案