(本小题满分14分)
已知
在[-1,0]和[0,2]上有相反的单调性.
(Ⅰ)求c的值;
(Ⅱ)若
的图象上在两点
、
处的切线都与y轴垂直,且函数f(x)在区间[m,n]上存在零点,求实数b的取值范围;
(Ⅲ)若函数f(x)在[0,2]和[4,5]上有相反的单调性,在f(x)的图象上是否存在一点M,使得f(x)在点M的切线斜率为2b?若存在,求出M点坐标;若不存在,请说明理由.
(Ⅰ)c=0
(Ⅱ)![]()
(Ⅲ)存在这样点M,坐标为(2,-10)
【解析】解:(Ⅰ)
………………………………1分
由
在[-1,0]和[0,2]上有相反的单调性,
知x=0是
的一个极值点. ………………………………………………2分
,得c=0. ………………………………………………………………3分
(Ⅱ)令
,得![]()
……………………………………………………4分
的图象上在两点
、
处的切线都与y轴垂直,
为
的极值点. ………………………………………………………5分
则
……………………………………………………………6分
又![]()
若
在[0,
]上存在零点.
![]()
则
…………………………………………………………7分
![]()
………………………………………………………………………8分
(Ⅲ)由(Ⅱ),知由![]()
得![]()
在[0,2]和[4,5]上有相反的单调性,
在[0,2]和[4,5]上有相反的符号,……………………………………9分
![]()
即
…………………………………………………………………………10分
假设存在点
使得
在M处切线斜率为2b,
则
即
……………………………………………11分
![]()
………………………………………………………12分
当![]()
由![]()
故存在这样点M,坐标为(2,-10). ………………………………………………14分
科目:高中数学 来源: 题型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为
(a>b>0),曲线C2的方程为y=
,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知
=2,点(
)在函数
的图像上,其中
=
.
(1)证明:数列
}是等比数列;
(2)设
,求
及数列{
}的通项公式;
(3)记
,求数列{
}的前n项和
,并证明
.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第
天(
)的销售价格(单位:元)为
,第
天的销售量为
,已知该商品成本为每件25元.
(Ⅰ)写出销售额
关于第
天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知
的图像在点
处的切线与直线
平行.
⑴ 求
,
满足的关系式;
⑵ 若
上恒成立,求
的取值范围;
⑶ 证明:
(
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com