精英家教网 > 高中数学 > 题目详情
10.设f(x)=$\left\{\begin{array}{l}{1+{e}^{\frac{1}{(x+1)^{2}}},x≠1}\\{k,x=1}\end{array}\right.$,试确定k的值使f(x)在点x=1处连续.

分析 根据分段函数在某处连续时,则两段的函数值在此处相等可得1+$\frac{1}{{e}^{2}}$=k即可.

解答 解:∵f(x)=$\left\{\begin{array}{l}{1+{e}^{\frac{1}{(x+1)^{2}}},x≠1}\\{k,x=1}\end{array}\right.$点x=1处连续,
∴k=1+$\frac{1}{{e}^{2}}$.

点评 本题主要考查函数在某处连续的定义,利用分段函数在某处连续时,则两段的函数值在此处相等,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知单位向量$\overrightarrow{e}$与向量$\overrightarrow{a}$,$\overrightarrow{b}$满足:|$\overrightarrow{a}$-$\overrightarrow{e}$|=|$\overrightarrow{a}$|,($\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{b}$-$\overrightarrow{e}$)=0,对每一个确定的向量$\overrightarrow{a}$,都有与其对应的向量$\overrightarrow{b}$满足以上条件,设M,m分别为|$\overrightarrow{b}$|的最大值和最小值,令t=M-m,则对任意的向量$\overrightarrow{a}$,实数t的取值范围是 (  )
A.[0,1]B.[0,$\frac{1}{2}$]C.[$\frac{1}{2}$,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)=sin(ωx+\frac{π}{6})$图象的相邻两条对称轴之间的距离为$\frac{π}{4}$,则f(x)的最小正周期是(  )
A.B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知公比q≠1的正项等比数列{an},a3=1,函数f(x)=$\frac{{3}^{x}}{{3}^{x}+1}$(x∈R),则f(lna1)+f(lna2)+f(lna3)+f(lna4)+f(lna5)=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ex-ax-1,g(x)=ln(ex-1)-lnx.
(Ⅰ)求证:当ax<x时,f(x)>0恒成立;
(Ⅱ)若存在x0>0,使得f(g(x0))>f(x0),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.证明函数 f(x)=2x+$\sqrt{x}$在[0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=ax2+bx+3a+b是[a2-6,a]上的偶函数,则3a+b=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且$\sqrt{15}$b=4asinB.
(1)求sinA的值;
(2)若a=$\sqrt{10}$,且△ABC的面积为$\frac{3\sqrt{15}}{4}$,求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.等差数列{an}的公差d≠0,试比较a4a9与a6a7的大小.

查看答案和解析>>

同步练习册答案