精英家教网 > 高中数学 > 题目详情
19.若函数f(x)=loga(x+b)的大致图象如图,其中a,b为常数,则函数g(x)=a-x+b的大致图象是(  )
A.B.C.D.

分析 由函数f(x)=loga(x+b)的图象可求出a和b的范围,再进一步判断g(x)=a-x+b的图象即可.

解答 解:由函数f(x)=loga(x+b)的图象为减函数可知0<a<1,
f(x)=loga(x+b)的图象由f(x)=logax向左平移可知0<b<1,
故函数g(x)=a-x+b的大致图象是A,
故选:A.

点评 本题考查指对函数的图象问题,是基本题.熟练掌握指数函数和对数函数的图象及函数图象的平移变换法则是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.函数y=2$\sqrt{x}$sin$\frac{x}{2}$cos$\frac{x}{2}$的导数是$\frac{1}{2\sqrt{x}}$sinx+$\sqrt{x}$cosx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=ax+loga(x+2)在[0,1]上的最大值与最小值之和为a,则a=$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=$\sqrt{x-2}+\frac{1}{{ln({3-x})}}$的定义域为(  )
A.[2,3)B.(2,3)C.[2,+∞)D.(-∞,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{|lo{g}_{2}x|,x>0}\end{array}\right.$,则f(f(-1))的值为(  )
A.-1B.$\frac{1}{2}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C的对边分别为a,b,c,bcosC=a-$\frac{1}{2}$c.
(Ⅰ)求角B的大小;
(Ⅱ)若b=1,求a+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={x|3≤3x≤27},B={x|log2x>1}.求A∩B,(∁RB)∪A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)已知圆(x+2)2+y2=1过椭圆C的一个顶点和焦点,求椭圆C标准方程.
(2)已知椭圆$\frac{{x}^{2}}{8+k}$+$\frac{{y}^{2}}{9}$=1的离心率为$\frac{1}{2}$,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=$\frac{1}{1-x}$+lg(2+x)的定义域是(  )
A.(-2,+∞)B.(-∞,-2)C.(-2,1)D.(-2,1)∪(1,+∞)

查看答案和解析>>

同步练习册答案