精英家教网 > 高中数学 > 题目详情
{an}为等差数列,公差d>0,Sn是数列{an}前n项和,已知a1a4=27,S4=24.
(1)求数列{an}的通项公式an
(2)令bn=
1anan+1
,求数列{bn}的前n项和Tn
分析:(1)利用等差数列的通项公式和前n项和公式即可得出;
(2)利用(1)和裂项求和即可得出.
解答:解:(1)S4=
4(a1+a4)
2
=24
,∴a1+a4=12
又a1a4=27,d>0,∴a1=3,a4=9,
∴9=3+3d,解得d=2,
∴an=2n+1.
(2)bn=
1
anan+1
=
1
(2n+1)(2n+3)
=
1
2
(
1
2n+1
-
1
2n+3
)

Tn=
1
2
[(
1
3
-
1
5
)+(
1
5
-
1
7
)+…+(
1
2n+1
-
1
2n+3
)]=
1
2
(
1
3
-
1
2n+3
)

=
n
6n+9
点评:熟练掌握等差数列的通项公式和前n项和公式、裂项求和是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,Sn其前n项和,且a2=3a4-6,则S9等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若平面内共线的A、B、P三点满足条件,
OP
=a1
OA
+a4015
OB
,其中{an}为等差数列,则a2008等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,a4=2,a7=-4,那么数列{an}的通项公式为(  )
A、an=-2n+10
B、an=-2n+5
C、an=-
1
2
n+10
D、an=-
1
2
n+5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,若
a7a6
<-1,且它们的前n项和Sn有最大值,则使Sn>0的n的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,若a2=3,a1+a6=12,则a7+a8+a9=
 

查看答案和解析>>

同步练习册答案