精英家教网 > 高中数学 > 题目详情
已知函数
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求函数f(x)在的最大值和最小值.
【答案】分析:(Ⅰ)f(x)解析式利用二倍角的正弦、余弦函数公式化简后,再利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值,即可确定出函数的最小正周期;
(Ⅱ)由x的范围求出这个角的范围,利用正弦函数的图象与性质即可求出f(x)的最小值与最大值.
解答:解:(Ⅰ)由已知,得f(x)=sin2x+cos2x=sin(2x+),
∵ω=2,∴T=π,
则f(x)的最小正周期为π;
(Ⅱ)∵-≤x≤,∴0≤2x+
则当2x+=时,即x=时,f(x)取得最大值
当2x+=时,即x=时,f(x)取得最小值-
点评:此题考查了二倍角的正弦、余弦函数公式,两角和与差的正弦函数公式,正弦函数的图象与性质,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年山东省临沂市临沭县高三(上)期中数学试卷(理科)(解析版) 题型:解答题

已知函数
(I)求f(x)的值域;
(II)试画出函数f(x)在区间[-1,5]上的图象.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市十一学校高三(上)第五次月考数学试卷(理科)(解析版) 题型:解答题

已知函数
(1)求f(x)的最小正周期;
(2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省衡阳八中高一(上)期中数学试卷(解析版) 题型:解答题

已知函数
(1)求f(x)的最小正周期;
(2)求使f(x)≥0成立的x的取值集合;
(3)若不等式|f(x)-m|<2在上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年山东省潍坊市高三(上)12月统考数学试卷(解析版) 题型:解答题

已知函数
(I)求f(x)的单调递增区间;
(II)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知成等差数列,且=9,求a的值.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年湖北省部分重点中学联考高三(上)期中数学试卷(理科)(解析版) 题型:解答题

已知函数
(1)求f(x)的周期和及其图象的对称中心;
(2)在△ABC中,角A、B、C的对边分别是a、b、c,满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

同步练习册答案