精英家教网 > 高中数学 > 题目详情
若实数m,n,x,y满足m2+n2=a,x2+y2=b(a≠0),则mx+ny的最大值是(    )

A.              B.              C.              D.

解析:设m=cosα,n=sinα,x=sinβ,?y=cosβ,则mx+ny=cosα·sinβ+sinα·cosβ=sin(α+β)≤.

答案:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•奉贤区一模)我们将具有下列性质的所有函数组成集合M:函数y=f(x)(x∈D),对任意x,y,
x+y
2
∈D
均满足f(
x+y
2
)≥
1
2
[f(x)+f(y)]
,当且仅当x=y时等号成立.
(1)若定义在(0,+∞)上的函数f(x)∈M,试比较f(3)+f(5)与2f(4)大小.
(2)设函数g(x)=-x2,求证:g(x)∈M.
(3)已知函数f(x)=log2x∈M.试利用此结论解决下列问题:若实数m、n满足2m+2n=1,求m+n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:044

函数f(x)的定义域为R,对任意xyR,都有f(xy)=f(x)f(y),且x>0时,0<f(x)<1.

(1)x<0时,试比较f(x)与1的大小;

(2)f(x)是否具有单调性,并证明你的结论;

(3)若集合M{(x,y)|f(x2)f(y2)>f(1)},N{(x,y)|f(axy2)=1},MN,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

函数f(x)的定义域为R,对任意xyR,都有f(xy)=f(x)f(y),且x>0时,0<f(x)<1.

(1)x<0时,试比较f(x)与1的大小;

(2)f(x)是否具有单调性,并证明你的结论;

(3)若集合M{(x,y)|f(x2)f(y2)>f(1)},N{(x,y)|f(axy2)=1},MN,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖南省四市九校高三上学期12月月考理科数学 题型:解答题

(本小题满分14分)

已知a∈R,函数g(x)=(lnx-1)ex+x(其中e为自然对数的底数).(1)判断函数f(x)在上的单调性;(2)是否存在实数,使曲线y=g(x)在点x=x0处的切线与y轴垂直? 若存在,求出x0的值;若不存在,请说明理由.(3)若实数m,n满足m>0, n>0,求证:nnemmnen.

 

查看答案和解析>>

同步练习册答案