精英家教网 > 高中数学 > 题目详情
(2013•湖北)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记,△BDM和△ABN的面积分别为S1和S2
(1)当直线l与y轴重合时,若S1=λS2,求λ的值;
(2)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.
以题意可设椭圆C1和C2的方程分别为
.其中a>m>n>0,

(1)如图1,若直线l与y轴重合,即直线l的方程为x=0,则



所以
在C1和C2的方程中分别令x=0,可得yA=m,yB=n,yD=﹣m,
于是
,则,化简得λ2﹣2λ﹣1=0,由λ>1,解得
故当直线l与y轴重合时,若S1=λS2,则
(2)如图2,若存在与坐标轴不重合的直线l,使得S1=λS2,根据对称性,

不妨设直线l:y=kx(k>0),
点M(﹣a,0),N(a,0)到直线l的距离分别为d1,d2,则
,所以d1=d2
,所以,即|BD|=λ|AB|.
由对称性可知|AB|=|CD|,所以|BC|=|BD|﹣|AB|=(λ﹣1)|AB|,
|AD|=|BD|+|AB|=(λ+1)|AB|,于是
将l的方程分别与C1和C2的方程联立,可求得

根据对称性可知xC=﹣xB,xD=﹣xA,于是

从而由①和②可得

,则由m>n,可得t≠1,于是由③可得
因为k≠0,所以k2>0.于是③关于k有解,当且仅当
等价于,由λ>1,解得
,由λ>1,解得,所以
时,不存在与坐标轴不重合的直线l,使得S1=λS2
时,存在与坐标轴不重合的直线l,使得S1=λS2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

是椭圆上不关于坐标轴对称的两个点,直线轴于点(与点不重合),O为坐标原点.
(1)如果点是椭圆的右焦点,线段的中点在y轴上,求直线AB的方程;
(2)设轴上一点,且,直线与椭圆的另外一个交点为C,证明:点与点关于轴对称.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求到两定点距离相等的点的坐标满足的条件.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线的倾斜角的余弦值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[2014·汕头质检]若三点A(2,3),B(3,2),C(,m)共线,则实数m=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线的参数方程为为参数),则直线的倾斜角为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点A(1,3),B(-2,-1),若直线l:y=k(x-2)+1与线段AB相交,则k的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若直线的倾斜角是,则         (结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线的倾斜角的大小是____________.

查看答案和解析>>

同步练习册答案