8£®Ä³¹«Ë¾²ÆÎñ²¿ºÍÐÐÕþ²¿ÐèÒªÕÐÈË£¬ÏÖÓмס¢ÒÒ¡¢±û¡¢¶¡ËÄÈËӦƸ£¬ÆäÖмס¢ÒÒÁ½È˸÷×Ô¶ÀÁ¢Ó¦Æ¸²ÆÎñ²¿£¬±û¡¢¶¡Á½È˸÷×Ô¶ÀÁ¢Ó¦Æ¸ÐÐÕþ²¿£¬ÒÑÖª¼×¡¢ÒÒÁ½È˸÷×ÔӦƸ³É¹¦µÄ¸ÅÂʾùΪ$\frac{1}{3}$£¬±û¡¢¶¡Á½È˸÷×ÔӦƸ³É¹¦µÄ¸ÅÂʾùΪ$\frac{1}{2}$£®
£¨1£©Çó²ÆÎñ²¿Ó¦Æ¸³É¹¦µÄÈËÊý¶àÓÚÐÐÕþ²¿Ó¦Æ¸³É¹¦µÄÈËÊýµÄ¸ÅÂÊ£»
£¨2£©¼Ç¸Ã¹«Ë¾±»Ó¦Æ¸³É¹¦µÄ×ÜÈËÊýΪX£¬ÇóXµÄ·Ö²¼ÁÐºÍÆÚÍû£®

·ÖÎö £¨1£©ÓÉÒÑÖªÀûÓÃÏ໥¶ÀÁ¢Ê¼þ¸ÅÂʳ˷¨¹«Ê½ºÍ»¥³âʼþ¸ÅÂʼӷ¨¹«Ê½ÄÜÇó³ö²ÆÎñ²¿Ó¦Æ¸³É¹¦µÄÈËÊý¶àÓÚÐÐÕþ²¿Ó¦Æ¸³É¹¦µÄÈËÊýµÄ¸ÅÂÊ£®
£¨2£©ÓÉÒÑÖªµÃX¿ÉÈ¡0£¬1£¬2£¬3£¬4£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³öXµÄ·Ö²¼ÁÐºÍÆÚÍû£®

½â´ð ½â£º£¨1£©ÓÉÒÑÖªµÃ²ÆÎñ²¿Ó¦Æ¸³É¹¦µÄÈËÊý¶àÓÚÐÐÕþ²¿Ó¦Æ¸³É¹¦µÄÈËÊýµÄ¸ÅÂÊ£º
P=$\frac{1}{3}¡Á\frac{1}{2}¡Á2¡Á£¨\frac{1}{2}£©^{2}$$+\frac{1}{3}¡Á\frac{1}{3}¡Á\frac{3}{4}$=$\frac{7}{36}$£®£¨3·Ö£©
£¨2£©ÓÉÒÑÖªµÃX¿ÉÈ¡0£¬1£¬2£¬3£¬4£¬
P£¨X=0£©=$\frac{2}{3}¡Á\frac{2}{3}¡Á\frac{1}{2}¡Á\frac{1}{2}$=$\frac{4}{36}$£¬
P£¨X=1£©=${C}_{2}^{1}¡Á\frac{1}{3}¡Á\frac{2}{3}¡Á\frac{1}{2}¡Á\frac{1}{2}$+${C}_{2}^{1}¡Á\frac{2}{3}¡Á\frac{2}{3}¡Á\frac{1}{2}¡Á\frac{1}{2}$=$\frac{12}{36}$£¬
P£¨X=2£©=$\frac{1}{3}¡Á\frac{1}{3}¡Á\frac{1}{2}¡Á\frac{1}{2}$+${C}_{2}^{1}{C}_{2}^{1}¡Á\frac{1}{3}¡Á\frac{2}{3}¡Á\frac{1}{2}¡Á\frac{1}{2}$+$\frac{2}{3}¡Á\frac{2}{3}¡Á\frac{1}{2}¡Á\frac{1}{2}$=$\frac{13}{36}$£¬
P£¨X=3£©=${C}_{2}^{1}¡Á\frac{1}{3}¡Á\frac{2}{3}¡Á\frac{1}{2}¡Á\frac{1}{2}$+${C}_{2}^{1}¡Á\frac{1}{3}¡Á\frac{1}{3}¡Á\frac{1}{2}¡Á\frac{1}{2}$=$\frac{6}{36}$£®
P£¨X=4£©=$\frac{1}{3}¡Á\frac{1}{3}¡Á\frac{1}{2}¡Á\frac{1}{2}$=$\frac{1}{36}$£®
¡àXµÄ·Ö²¼ÁÐΪ

X01234
P$\frac{4}{36}$$\frac{12}{36}$$\frac{13}{36}$$\frac{6}{36}$$\frac{1}{36}$
E£¨X£©=$0¡Á\frac{4}{36}+1¡Á\frac{12}{36}+2¡Á\frac{13}{36}+3¡Á\frac{6}{36}+4¡Á\frac{1}{36}$=$\frac{5}{3}$£®£¨10·Ö£©

µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄÇóÖ°Ç󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪעÒâÏ໥¶ÀÁ¢Ê¼þ¸ÅÂʳ˷¨¹«Ê½ºÍ»¥³âʼþ¸ÅÂʼӷ¨¹«Ê½µÄÁé»îÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬µ×ÃæABCDÊÇÆ½ÐÐËıßÐΣ¬¡ÏDBC=45¡ã£¬$\frac{BD}{BC}$=$\sqrt{2}$£¬²àÀâPD¡Íµ×ÃæABCD£¬PD=CD£¬EÊÇPCµÄÖе㣮
£¨1£©ÇóÖ¤£ºPA¡ÎÆ½ÃæBDE£»
£¨2£©ÇóÖ¤£ºDE¡ÍPB£®
£¨3£©ÈôPD=2£¬ÇóµãAµ½Æ½ÃæBDEµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¾­¹ýµãP£¨1£¬1£©£¬ÀëÐÄÂÊΪ$\frac{\sqrt{6}}{3}$£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©Ö±Ïßl²»¾­¹ýµãP£¬Ð±ÂÊΪ$\frac{1}{3}$£¬ÓëÍÖÔ²½»ÓÚ²»Í¬Á½µãA¡¢B£®
¢ÙÇóÖ¤£ºÖ±ÏßPA¡¢PBµÄбÂÊÖ®ºÍΪ¶¨Öµ£»
¢ÚÈô¡÷PABÊÇÖ±½ÇÈý½ÇÐΣ¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=$\frac{2{x}^{2}}{x+1}$£¬º¯Êýg£¨x£©=asin£¨$\frac{¦Ð}{6}$x£©-2a+2£¨a£¾0£©£¬Èô´æÔÚx1¡Ê[0£¬1]£¬¶ÔÈÎÒâx2¡Ê[0£¬1]¶¼ÓÐf£¨x1£©=g£¨x2£©³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ[$\frac{2}{3}$£¬1]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖªiÊÇÐéÊýµ¥Î»£¬Ôò|$\frac{3-i}{£¨1+i£©^{2}}$+$\frac{1+3i}{£¨1-i£©^{2}}$|=$\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Ä³Ëã·¨Á÷³ÌͼÈçͼËùʾ£¬ÔòÊä³ökµÄÖµÊÇ5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Éè¡÷ABCµÄÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ß³¤·Ö±ðΪa£¬b£¬c£¬ÇÒatanB=$\frac{20}{3}$£¬bsinA=4£¬ÔòaµÈÓÚ£¨¡¡¡¡£©
A£®3B£®$\frac{8}{3}$C£®4D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èçͼ£¬Íø¸ñÖ½ÉÏСÕý·½Ðεı߳¤Îª1£¬´ÖʵÏß»­³öµÄÊÇij¶àÃæÌåµÄÈýÊÓͼ£¬Ôò¸Ã¶àÃæÌåµÄ¸÷ÌõÀâÖУ¬×µÄÀâµÄ³¤¶ÈΪ£¨¡¡¡¡£©
A£®2$\sqrt{5}$B£®2$\sqrt{6}$C£®4$\sqrt{2}$D£®4$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖªÕýÈýÀâ×¶µÄ¸ßΪ3cm£¬Ò»¸ö²àÃæÈý½ÇÐεÄÃæ»ýΪ6$\sqrt{3}$cm2£¬ÔòÕâ¸öÕýÈýÀâ×¶µÄ²àÃæºÍµ×ÃæËù³ÉµÄ¶þÃæ½ÇµÄ´óСÊÇ60¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸