精英家教网 > 高中数学 > 题目详情
已知定义在(-∞,3]上的单调减函数f(x),使得f(a2-sinx)≤f(a+1+cos2x)对一切实数x均成立,求实数a的取值范围。
解:由题意,得
恒成立,
恒成立,
其中的最小值分别为2,1,
所以有,解得:
所以实数的取值范围是
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在(
3
2
,3)
上的两个函数f(x)=
a
1+x2
,g(x)=
1
x
-
3
16
,y=f(x)
的图象在点A(
3
,f
3
)
处的切线的斜率为-
3
4

(1)求f(x)的解析式;
(2)试求实数k的最大值,使得对任意x∈(
3
2
,3),不等式f(x)≥kg(x)
恒成立;
(3)若x1x2x3∈(
3
2
,3),且3x1x2x3=2(x1x2+x2x3+x3x1)
,求证:
1
1+
x
2
1
+
1
1+
x
2
2
+
1
1+
x
2
3
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在闭区间[-3,3]上的两个函数:g(x)=2x3+5x2+4x,f(x)在[-3,3]的值域为[-k-8,-k+120],若对于任意x1∈[-3,3],总存在x0∈[-3,3]使得g(x0)=f(x1)成立,求k的取值范围是
[9,13]
[9,13]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间[-π,
2
]
上的函数y=f(x)图象关于直线x=
π
4
对称,当x≥
π
4
时,f(x)=-sinx.
(1)作出y=f(x)的图象;
(2)求y=f(x)的解析式;
(3)若关于x的方程f(x)=-
9
10
有解,将方程所有的解的和记为M,结合(1)中函数图象,求M的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间[-π,
2
]
上的函数y=f(x)图象关于直线x=
π
4
对称,当x≥
π
4
时,f(x)=-sinx.
(1)作出y=f(x)的图象;
(2)求y=f(x)的解析式;
(3)当a∈[-1,1]时,讨论关于x的方程f(x)=a的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间[-π,
2
]
上的函数y=f(x)图象关于直线x=
π
4
对称,当x≥
π
4
时,f(x)=-sinx.
(1)作出y=f(x)的图象;(2)求y=f(x)的解析式;
(3)若关于x的方程f(x)=a有解,将方程中的a取一确定的值所得的所有的解的和记为Ma,求Ma的所有可能的值及相应的a的取值范围.

查看答案和解析>>

同步练习册答案