精英家教网 > 高中数学 > 题目详情
如果椭圆
x2
36
+
y2
9
=1
的弦被点(2,2)平分,那么这条弦所在的直线的方程是(  )
A.x+4y=0B.x+4y-10=0C.x+4y-6=0D.x-4y-10=0
设这条弦与椭圆
x2
36
+
y2
9
=1
交于A(x1,y1),B(x2,y2),
由中点坐标公式知x1+x2=4,y1+y2=4,
把A(x1,y1),B(x2,y2)代入x2+4y2=36,
x12+4y12=36①
x22+4y22=36②

①-②,得4(x1-x2)+16(y1-y2)=0,
k=
y1-y2
x1-x2
=-
1
4

∴这条弦所在的直线的方程y-2=-
1
4
(x-2)

即x+4y-10=0.
故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

在椭圆
x2
16
+
y2
9
=1
内,有一内接三角形ABC,它的一边BC与长轴重合,点A在椭圆上运动,则△ABC的重心的轨迹方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知抛物线C:x2=2py(p>0)与圆O:x2+y2=8相交于A、B两点,且
OA
OB
=0
(O为坐标原点),直线l与圆O相切,切点在劣弧AB(含A、B两点)上,且与抛物线C相交于M、N两点,d是M、N两点到抛物线C的焦点的距离之和.
(Ⅰ)求p的值;
(Ⅱ)求d的最大值,并求d取得最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线x2=4
3
y
的准线过双曲线
x2
m2
-y2=-1
的一个焦点,则双曲线的离心率为(  )
A.
3
2
4
B.
6
2
C.
3
D.
3
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠CAB=90°,|AB|=2,|AC|=
3
2
,点A,B关于y轴对称.一曲线E过C点,动点P在曲线E上运动,且保持|PA|+|PB|的值不变.
(1)求曲线E的方程;
(2)已知点S(0,-
3
),T(0,
3
)
,求∠SPT的最小值;
(3)若点F(1,
3
2
)
是曲线E上的一点,设M,N是曲线E上不同的两点,直线FM和FN的倾斜角互补,试判断直线MN的斜率是否为定值,如果是,求出这个定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),
(1)若椭圆的长轴长为4,离心率为
3
2
,求椭圆的标准方程;
(2)在(1)的条件下,设过定点M(0,2)的直线l与椭圆C交于不同的两点A,B,且∠AOB为锐角(O为坐标原点),求直线l的斜率k的取值范围;
(3)过原点O任意作两条互相垂直的直线与椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)相交于P,S,R,Q四点,设原点O到四边形PQSR的一边距离为d,试求d=1时a,b满足的条件.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)以F1、F2为左、右焦点,离心率e=
1
2
,一个短轴的端点(0,
3
);抛物线C2:y2=4mx(m>0),焦点为F2,椭圆C1与抛物线C2的一个交点为P.
(1)求椭圆C1与抛物线C2的方程;
(2)直线l经过椭圆C1的右焦点F2与抛物线C2交于A1,A2两点,如果弦长|A1A2|等于△PF1F2的周长,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[理]如图,已知动点A,B分别在图中抛物线y2=4x及椭圆
x2
4
+
y2
3
=1
的实线上运动,若ABx轴,点N的坐标为(1,0),则△ABN的周长l的取值范围是______.
[文]点P是曲线y=x2-lnx上任意一点,则P到直线y=x-2的距离的最小值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知A(-2,0),B(2,0),P为平面内一动点,直线PA,PB的斜率之积为-
1
4
,记动点P的轨迹为C.
(1)求曲线C的轨迹方程;
(2)若点D(0,2),点M,N是曲线C上的两个动点,且
DM
DN
,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案